Smart Medical

A Light-Reflecting Balloon Catheter for Atraumatic Tissue Defect Repair
E. T. Roche, et al., “A Light-Reflecting Balloon Catheter for Atraumatic Tissue Defect Repair,” Science Translational Medicine, vol. 7, no. 306, pp. 306ra149, 2015. Publisher's VersionAbstract

Closing small defects in the body typically requires stitching of tissues during surgery. Toward a minimally invasive approach, Roche et al. engineered a balloon catheter with a reflective surface coating that could be used to adhere biodegradable patches to tissues. The device unfolds the patch and its adhesive, delivers ultraviolet (UV) light, and then applies pressure to stabilize the adhesive as the light cures the polymer. The authors demonstrated catheter-mediated application of the photocurable polymer patch in vivo in rat tissue, with minimal inflammation and complete animal survival, as well as in a challenging septal defect in the beating hearts of pigs. The device was also used to seal porcine stomach ulcers and abdominal hernias ex vivo, suggesting versatility of this approach in repairing defects more easily and atraumatically than sutures.A congenital or iatrogenic tissue defect often requires closure by open surgery or metallic components that can erode tissue. Biodegradable, hydrophobic light-activated adhesives represent an attractive alternative to sutures, but lack a specifically designed minimally invasive delivery tool, which limits their clinical translation. We developed a multifunctional, catheter-based technology with no implantable rigid components that functions by unfolding an adhesive-loaded elastic patch and deploying a double-balloon design to stabilize and apply pressure to the patch against the tissue defect site. The device uses a fiber-optic system and reflective metallic coating to uniformly disperse ultraviolet light for adhesive activation. Using this device, we demonstrate closure on the distal side of a defect in porcine abdominal wall, stomach, and heart tissue ex vivo. The catheter was further evaluated as a potential tool for tissue closure in vivo in rat heart and abdomen and as a perventricular tool for closure of a challenging cardiac septal defect in a large animal (porcine) model. Patches attached to the heart and abdominal wall with the device showed similar inflammatory response as sutures, with 100% small animal survival, indicating safety. In the large animal model, a ventricular septal defect in a beating heart was reduced to <1.6 mm. This new therapeutic platform has utility in a range of clinical scenarios that warrant minimally invasive and atraumatic repair of hard-to-reach defects.

J. Gafford, et al., “Shape Deposition Manufacturing of a Soft, Atraumatic, Deployable Surgical Grasper,” ASME Journal of Mechanisms and Robotics, Special Issue: Fabrication of Fully Integrated Robotic Mechanisms, vol. 7, no. 2, pp. 021006-021006-11, 2015. Publisher's VersionAbstract

This paper details the design, analysis, fabrication, and validation of a deployable, atraumatic grasper intended for retraction and manipulation tasks in manual and robotic minimally invasive surgical (MIS) procedures. Fabricated using a combination of shape deposition manufacturing (SDM) and 3D printing, the device (which acts as a deployable end-effector for robotic platforms) has the potential to reduce the risk of intraoperative hemorrhage by providing a soft, compliant interface between delicate tissue structures and the metal laparoscopic forceps and graspers that are currently used to manipulate and retract these structures on an ad hoc basis. This paper introduces a general analytical framework for designing SDM fingers where the desire is to predict the shape and the transmission ratio, and this framework was used to design a multijointed grasper that relies on geometric trapping to manipulate tissue, rather than friction or pinching, to provide a safe, stable, adaptive, and conformable means for manipulation. Passive structural compliance, coupled with active grip force monitoring enabled by embedded pressure sensors, helps to reduce the cognitive load on the surgeon. Initial manipulation tasks in a simulated environment have demonstrated that the device can be deployed though a 15 mm trocar and develop a stable grasp using Intuitive Surgical's daVinci robotic platform to deftly manipulate a tissue analog.

M. Torabi, R. Gupta, and C. J. Walsh, “Compact Robotically Steerable Image-Guided Instrument for Multi-Adjacent-Point (MAP) Targeting,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 802-815, 2014. Publisher's VersionAbstract

Accurately targeting multi-adjacent points (MAPs) during image-guided percutaneous procedures is challenging due to needle deflection and misalignment. The associated errors can result in inadequate treatment of cancer in the case of prostate brachytherapy, or inaccurate diagnosis during biopsy, while repeated insertions increase procedure time, radiation dose, and complications. To address these challenges, we present an image-guided robotic system capable of MAP targeting of irregularly shaped volumes after a single insertion of a percutaneous instrument. The design of the compact CT-compatible drive mechanism is based on a nested screw and screw-spline combination that actuates a straight outer cannula and a curved inner stylet that can be repeatedly straightened when retracted inside the cannula. The stylet translation and cannula rotation/translation enable a 3-D workspace to be reached with the stylet's tip. A closed-form inverse kinematics and image-to-robot registration are implemented in an image-guided system including a point-and-click user interface. The complete system is successfully evaluated with a phantom under a Siemens Definition Flash CT scanner. We demonstrate that the system is capable of MAP targeting for a 2-D shape of the letter “H” and a 3-D helical pattern with an average targeting error of 2.41 mm. These results highlight the benefit and efficacy of the proposed robotic system in seed placement during image-guided brachytherapy.

L. Marechal, et al., “Optimal Spatial Design of Non-Invasive Magnetic Field-based Localization Systems,” in Inter. Conf. on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 3510-3516. Publisher's VersionAbstract

Magnetic localization systems based on passive permanent magnets (PM) are of great interest due to their ability to provide non-contact sensing and without any power requirement for the PM. Medical procedures such as ventriculostomy can benefit greatly from real-time feedback of the inserted catheter tip. While the effects of the number of sensors on the localization accuracy in such systems has been reported, the spatial design of the sensor layout has been largely overlooked. Here in this paper, a framework for determining an optimal sensor assembly for enhanced localization performance is presented and investigated through numerical simulations and direct experiments. Two approaches are presented: one based on structured grid configuration and the other derived using Genetic Algorithms. Simulation results verified by experiments strongly suggest that the layout of the sensors not only has an effect on the localization accuracy, but also has an effect far more pronounced than improvements brought by increasing the number of sensors.

J. Gafford, A. Degirmenci, S. Kesner, R. J. Wood, R. Howe, and C. J. Walsh, “A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors for Minimally-Invasive Surgery,” in Inter. Conf. on Robotics and Automation (ICRA), Hong Kong, China, 2014, pp. 1419-1425. Publisher's VersionAbstract

In this paper we have rapidly prototyped customized, highly-sensitive, mm-scale multi-axis force sensors for medical applications. Using a composite laminate batch fabrication process with biocompatible constituent materials, we have fabricated a fully-integrated, 10×10 mm three-axis force sensor with up to 5 V/N sensitivity and RMS noise on the order of ~1.6 mN, operational over a range of -500 to 500 mN in the x- and y-axes, and -2.5 to 2.5 N in the z-axis. Custom foil-based strain sensors were fabricated in parallel with the mechanical structure, obviating the need for post-manufacturing alignment and assembly. The sensor and its custom-fabricated signal conditioning circuitry fit within a 1×1×2 cm volume to realize a fully-integrated force transduction platform with potential haptics and control applications in minimally-invasive surgical tools. The form factor, biocompatibility, and cost of the sensor and signal conditioning makes this method ideal for rapid-prototyping low-cost, mm-scale distal force sensors. Sensor performance is validated in a simulated tissue palpation task using a robotic master-slave platform.

Pages