Effect of Timing of Hip Extension Assistance with IMU-based Iterative Control during Loaded Walking with a Soft Exosuit

Ye Ding1,2, Fausto A. Panizzolo1,2, Ignacio Galiana1,2, Christopher Sivy1,2, Kenneth G. Holt3, Conor J. Walsh1,2,*

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
3Sargent College of Health and Rehabilitation Science, Boston University, USA
*Corresponding author. E-mail: walsh@seas.harvard.edu

MOTIVATION
- Walking variability in joint kinematics and kinetics makes it harder for same effective external assistive force to provide metabolic benefits to all wearers.
- Understanding the effects of different hip assistive profiles is a fundamental step of designing assistive device that can provide higher metabolic benefits.
- Limited literature with studies exploring the effects of timing and magnitude of assistance on hip joint.

HYPOTHESIS
- Proposed controller can adapt different kinematics and kinetics and provide consistent hip joint assistance.
- Onset timing and peak force timing can regulate the amount of positive mechanical power delivered to the hip joint which is related to metabolic cost of walking.

AIM
- Model soft exosuit to determine how to appropriate apply the desired assistive force through a soft exosuit.
- Design and validate the performance of IMU-based iterative control across different subjects.
- Investigate the effect of onset and peak timings between hip assistive profiles by means of a soft exosuit.

MODELING
- Model soft exosuit to determine how to appropriate apply the desired assistive force through a soft exosuit.

CONTROLLER
- Detect the onset timing with maximum thigh flexion point from IMU

METHOD
- Eight male healthy participants (age 29.8 ± 5.0 yr, weight 82.6 ± 5.8 kg, height 1.79 ± 0.05 m, mean ± SD)
- A baseline condition: 23 kg loaded walking on treadmill at 1.5 m/s
- Four conditions: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LESP), late-start-late-peak (LSLP).
- Measurements: metabolic cost, kinematic data, ground reaction force, electromyographic signal (EMG).

RESULT

Force tracking performance
- Peak timing:
 Target: 23%
 Average: 22.7 ± 0.6%

- Peak magnitude:
 Target: 200N
 Average: 198.2 ± 1.6N

Different assistive force profiles:
- Onset timing (90%, 0%)
- Peak timing (13%, 17%)
- Peak force 200N

Delivered positive mechanical power & metabolic reduction:

\begin{tabular}{|c|c|c|c|c|}
\hline
 & ESEP & ESLP & LSEP & LSLP \\
\hline
Delivered positive power (W·kg-1) & 0.198 & 0.219 & 0.185 & 0.198 \\
\hline
Metabolic reduction (%) & 5.7 & 8.5 & 6.3 & 7.1 \\
\hline
\end{tabular}

DISCUSSION & CONCLUSION
- Demonstrated IMU-based iterative controller can deliver robust hip extension assistive profiles across subjects.
- Different assistive conditions provided insight on how to manipulate actuation timing to regulate positive mechanical power to augment human walking.
- ESLP provided highest mechanical positive power and highest metabolic reduction, suggesting that starting the assistance at terminal swing with a later peak force may be the most beneficial strategy.

FUNDING ACKNOWLEDGMENT