Soft Exosuits

M. Wehner, et al., “Experimental Characterization of Components for Active Soft Orthotics,” in IEEE International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 2012, pp. 1586-1592. PDF
C. J. Walsh, K. Endo, and H. Herr, “Quasi-Passive Leg Exoskeleton for Load Carrying Augmentation,” International Journal of Humanoid Robotics, Special Issue: Active Exoskeletons, vol. 4, no. 3, pp. 487-506, 2007.Abstract

A quasi-passive leg exoskeleton is presented for load-carrying augmentation during walking. The exoskeleton has no actuators, only ankle and hip springs and a knee variable damper. Without a payload, the exoskeleton weighs 11.7kg and requires only 2 Watts of electrical power during loaded walking. For a 36kg payload, we demonstrate that the quasi-passive exoskeleton transfers on average 80% of the load to the ground during the single support phase of walking. By measuring the rate of oxygen consumption on a study participant walking at a self-selected speed, we find that the exoskeleton slightly increases the walking metabolic cost of transport (COT) as compared to a standard loaded backpack (10% increase). However, a similar exoskeleton without joint springs or damping control (zero-impedance exoskeleton) is found to increase COT by 23% compared to the loaded backpack, highlighting the benefits of passive and quasi-passive joint mechanisms in the design of efficient, low-mass leg exoskeletons.

C. J. Walsh, K. Pasch, and H. Herr, “An Autonomous, Underactuated Exoskeleton for Load Carrying Augmentation,” in Proc. Inter. Conf. on IROS, Beijing, China, 2006, pp. 1410-1415. PDF
C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr, “Development of a Lightweight, Under-actuated Exoskeleton to Assist in Load Carrying in Walking,” in Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006, pp. 3485-3491. PDF