A Soft Exosuit Assisting Hip Abduction for Knee Adduction Moment Reduction During Walking

Citation:

H. D. Yang, M. Cooper, A. Eckert-Erdheim, D. Orzel, and C. J. Walsh, “A Soft Exosuit Assisting Hip Abduction for Knee Adduction Moment Reduction During Walking,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7439-7446, 2022.
PDF3.62 MB

Abstract:

The knee joint experiences significant torques in the frontal plane to keep the body upright during walking. Excessive loading over time can lead to knee osteoarthritis (OA), the progression of which is correlated with external knee adduction moment (KAM). In this paper, we present a wearable soft robotic exosuit that applies a hip abduction torque and evaluate its ability to reduce KAM. The exosuit uses a portable cable actuation system to generate torque when desired while remaining unrestrictive when unpowered. We explored five different force profiles on healthy participants (N=8) walking on an instrumented treadmill at 1.25 m/s. For each force profile, we tested two peak force levels: 15% and 20% of bodyweight. We observed KAM reductions with two of the five profiles. With Force Profile 2 (FP2), peak KAM was reduced by 9.61% and impulse KAM by 12.76%. With Force Profile 5 (FP5), we saw reductions of peak KAM by 6.14% and impulse KAM by 21.09%. These initial findings show that the device has the ability to change walking biomechanics in a consistent and potentially beneficial way.

Publisher's Version

Last updated on 06/26/2022