Publications by Type: Journal Article

S. Berndt, M. Herman, C. Walsh, and D. Holland, “The SDM Finger: Teaching engineering design through soft robotics,” Science Scope, vol. 43, no. 4, pp. 14-21, 2019. PDF
Reducing the metabolic rate of walking and running with a versatile, portable exosuit
J. Kim, et al., “Reducing the metabolic rate of walking and running with a versatile, portable exosuit,” Science, vol. 365, no. 6454, pp. 668-672, 2019. Publisher's VersionAbstract
Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging. We show that a portable exosuit that assists hip extension can reduce the metabolic rate of treadmill walking at 1.5 meters per second by 9.3% and that of running at 2.5 meters per second by 4.0% compared with locomotion without the exosuit. These reduction magnitudes are comparable to the effects of taking off 7.4 and 5.7 kilograms during walking and running, respectively, and are in a range that has shown meaningful athletic performance changes. The exosuit automatically switches between actuation profiles for both gaits, on the basis of estimated potential energy fluctuations of the wearer’s center of mass. Single-participant experiments show that it is possible to reduce metabolic rates of different running speeds and uphill walking, further demonstrating the exosuit’s versatility.
W. - H. Hsu, E. J. Park, D. L. Miranda, H. M. Sallum, C. J. Walsh, and E. C. Goldfield, “Gait Initiation of New Walkers and the Adult's Role in Regulating Directionality of the Child's Body Motion,” Journal of Motor Learning and Development, vol. 7, no. 1, pp. 35-48, 2019. PDF
F. Panizzolo, et al., “Metabolic cost adaptations during training with a soft exosuit assisting the hip joint,” Scientific Reports, 2019. PDF
D. J. Preston, et al., “A soft ring oscillator,” Science Robotics, vol. 4, no. 31, 2019. PDF
J. Zhang, et al., “Robotic Artificial Muscles: Current Progress and Future Perspectives,” IEEE Transaction on Robitics, pp. 1-21, 2019. PDF
J. Kang, K. Ghonasgi, C. Walsh, and S. Agrawal, “Simulating Hemiparetic Gait in Healthy Subjects using TPAD with a Closed-loop Controller,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 5, pp. 974-983, 2019. PDF
Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots
F. Connolly, D. A. Wagner, C. J. Walsh, and K. Bertoldi, “Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots,” Extreme Mechanics Letters, vol. 27, pp. 52-58, 2019. Publisher's Version PDF
M. Grimmer, et al., “Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance,” Journal of Biomechanics, vol. 83, no. 23, pp. 76-84, 2019. PDF
M. Grimmer, R. Riener, C. J. Walsh, and A. Seyfarth, “Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons,” Journal of NeuroEngineering and Rehabilitation, vol. 16, no. 1, 2019. PDF
S. Lee, et al., “Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking,” Journal of NeuroEngineering and Rehabilitation, vol. 15, no. 1, pp. 66, 2018. PDF
M. Moyne, M. Herman, K. Z. Gajos, C. Walsh, and D. P. Holland, “The Development and Evaluation of DEFT, a Web-Based Tool for Engineering Design Education,” IEEE Transaction on Learning Technologies, vol. 11, no. 4, 2018. PDF
F. Porciuncula, et al., “Wearable movement sensors for rehabilitation: A focused review of technological and clinical advances,” PM&R, vol. 10, no. 9, pp. S220-232, 2018. PDF
L. Cappello, et al., “Exploiting Textile Mechanical Anisotropy for Fabric-Based Pneumatic Actuators,” Soft Robotics, 2018. PDF Supplementary PDF Video
L. Cappello, et al., “Assisting hand function after spinal cord injury with a fabric-based soft robotic glove,” Journal of NeuroEngineering and Rehabilitation, vol. 15, no. 1, pp. 59, 2018. Publisher's VersionAbstract
Spinal cord injury is a devastating condition that can dramatically impact hand motor function. Passive and active assistive devices are becoming more commonly used to enhance lost hand strength and dexterity. Soft robotics is an emerging discipline that combines the classical principles of robotics with soft materials and could provide a new class of active assistive devices. Soft robotic assistive devices enable a human-robot interaction facilitated by compliant and light-weight structures. The scope of this work was to demonstrate that a fabric-based soft robotic glove can effectively assist participants affected by spinal cord injury in manipulating objects encountered in daily living.
W. Whyte, et al., “Sustained release of targeted cardiac therapy with a replenishable implantable epicardial reservoir,” Nature Biomedical Engineering, vol. 2, pp. 416-428, 2018. PDF Supplementary PDF
M. A. Horvath, et al., “Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart,” Annals of Biomedical Engineering, 2018. Publisher's VersionAbstract
Efficient coupling of soft robotic cardiac assist devices to the external surface of the heart is crucial to augment cardiac function and represents a hurdle to translation of this technology. In this work, we compare various fixation strategies for local and global coupling of a direct cardiac compression sleeve to the heart. For basal fixation, we find that a sutured Velcro band adheres the strongest to the epicardium. Next, we demonstrate that a mesh-based sleeve coupled to the myocardium improves function in an acute porcine heart failure model. Then, we analyze the biological integration of global interface material candidates (medical mesh and silicone) in a healthy and infarcted murine model and show that a mesh interface yields superior mechanical coupling via pull-off force, histology, and microcomputed tomography. These results can inform the design of a therapeutic approach where a mesh-based soft robotic DCC is implanted, allowed to biologically integrate with the epicardium, and actuated for active assistance at a later timepoint. This strategy may result in more efficient coupling of extracardiac sleeves to heart tissue, and lead to increased augmentation of heart function in end-stage heart failure patients.
C. J. Walsh, “Human-in-the-loop development of soft wearable robots,” Nature Review Materials, vol. 3, pp. 78-80, 2018. Publisher's VersionAbstract

The field of soft wearable robotics offers the opportunity to wear robots like clothes to assist the movement of specific body parts or to endow the body with functionalities. Collaborative efforts of materials, apparel and robotics science have already led to the development of wearable technologies for physical therapy. Optimizing the human–robot system by human-in-the-loop approaches will pave the way for personalized soft wearable robots for a variety of applications.

D. P. Holland, C. J. Walsh, and G. J. Bennett, “A qualitative investigation of design knowledge reuse in project-based mechanical design courses,” European Journal of Engineering Education, pp. 1-16, 2018. Publisher's Version PDF
D. Holland, S. Berndt, M. Herman, and C. Walsh, “Growing the Soft Robotics Community Through Knowledge-Sharing Initiatives,” Soft Robotics, vol. 5, no. 2, pp. 119-121, 2018. Publisher's Version PDF