Publications by Year: 2011

M. S. Berns, et al., “Single Entry Tunneler [SET] for Hemodialysis Graft Procedures,” in ASME Design of Medical Devices Conference, Minneapolis, Minnesota, USA, 2011. PDF
C. J. Walsh, J. C. Franklin, A. H. Slocum, and R. Gupta, “Design of a robotic tool for percutaneous instrument distal tip repositioning,” in 33rd Annual International Conference of the IEEE EMBS, Boston, MA, 2011, pp. 2097-2100. PDF
L. J. Brattain, et al., “Design of an Ultrasound Needle Guidance System,” in 33rd Annual International Conference of the IEEE EMBS, Boston, MA, 2011, pp. 8090-8093.Abstract

In this paper, we describe our prototype of an ultrasound guidance system to address the need for an easy-touse, cost-effective, and portable technology to improve ultrasound-guided procedures. The system consists of a lockable, articulating needle guide that attaches to an ultrasound probe and a user-interface that provides real-time visualization of the predicted needle trajectory overlaid on the ultrasound image. Our needle guide ensures proper needle alignment with the ultrasound imaging plane. Moreover, the calculated needle trajectory is superimposed on the real-time ultrasound image, eliminating the need for the practitioner to estimate the target trajectory, and thereby reducing injuries from needle readjustment. Finally, the guide is lockable to prevent needle deviation from the desired trajectory during insertion. This feature will also allow the practitioner to free one hand to complete simple tasks that usually require a second practitioner to perform. Overall, our system eliminates the experience required to develop the fine hand movement and dexterity needed for traditional ultrasound-guided procedures. The system has the potential to increase efficiency, safety, quality, and reduce costs for a wide range of ultrasound-guided procedures. Furthermore, in combination with portable ultrasound machines, this system will enable these procedures to be more easily performed by unskilled practitioners in non-ideal situations such as the battlefield and other disaster relief areas.

X. Chen, K. Tuncali, A. H. Slocum, and C. J. Walsh, “Design of an instrument guide for MRI-guided percutaneous interventions,” in ASME Design of Medical Devices Conference, Minneapolis, Minnesota, USA, 2011. PDF
C. J. Walsh, A. H. Slocum, and R. Gupta, “Preliminary Evaluation of Robotic Needle Distal Tip Repositioning,” in Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 2011, pp. 790108. Publisher's VersionAbstract

Advances in medical imaging now provide detailed images of solid tumors inside the body and miniaturized energy delivery systems enable tumor destruction through local heating powered by a thin electrode. We have developed a robot for accurately repositioning the distal tip of a medical instrument such an ablation probe to adjacent points within tissue. The position accuracy in ballistics gelatin was evaluated in a 2D experimental setup with a digital SLR camera that was fixed to a rig that also contained the gelatin. The robot was mounted to the rig in such a way that the stylet was deployed in a plane parallel the camera's lens. A grid paper attached to the back of the box containing the gelatin provided a stationary reference point for each of the pictures taken and also served as a coordinate system for making measurements. The measurement repeatability error was found by taking a stylet tip position measurement five times for two different pictures and found to be 0.26 mm. For a stylet with a radius of curvature of 31.5 mm and a diameter of 0.838 mm, the targeting accuracy was found to be 2.5 ± 1.4 mm at points that were approximately 38 mm lateral from the cannula axis.

C. J. Walsh, et al., “Smaller and Deeper Lesions Increase the Number of Acquired Scan Series in CT-guided Lung Biopsy,” Journal of Thoracic Imaging, vol. 26, no. 3, pp. 196-203, 2011. PDF