Publications by Year: 2015

K. Subramanyam, et al., “Soft Wearable Orthotic Device for Assisting Kicking Motion in Developmentally Delayed Infants,” ASME Design of Medical Devices Conference. 2015. Publisher's Version PDF
J. Bae, et al., “A Soft, Wearable, Quantitative Ankle Diagnostic Device,” ASME Design of Medical Devices Conference. 2015. PDF
Capacitive Soft Strain Sensors via Multicore-Shell Fiber Printing
A. Frutiger, et al., “Capacitive Soft Strain Sensors via Multicore-Shell Fiber Printing,” Advanced Materials, vol. 27, no. 15, pp. 2440-2446. [Back Cover], 2015. Publisher's VersionAbstract

We report a new method for fabricating textile integrable capacitive soft strain sensors based on multicore–shell fiber printing. The fiber sensors consist of four concentric, alternating layers of conductor and dielectric, respectively. These wearable sensors provide accurate and hysteresis-free strain measurements under both static and dynamic conditions.

A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, and C. J. Walsh, “A Biologically Inspired Soft Exosuit for Walking Assistance,” The International Journal of Robotics Research (IJRR), vol. 34, no. 6, pp. 744-762, 2015. Publisher's VersionAbstract

We present the design and evaluation of a multi-articular soft exosuit that is portable, fully autonomous, and provides assistive torques to the wearer at the ankle and hip during walking. Traditional rigid exoskeletons can be challenging to perfectly align with a wearer’s biological joints and can have large inertias, which can lead to the wearer altering their natural motion patterns. Exosuits, in comparison, use textiles to create tensile forces over the body in parallel with the muscles, enabling them to be light and not restrict the wearer’s kinematics. We describe the biologically inspired design and function of our exosuit, including a simplified model of the suit’s architecture and its interaction with the body. A key feature of the exosuit is that it can generate forces passively due to the body’s motion, similar to the body’s ligaments and tendons. These passively generated forces can be supplemented by actively contracting Bowden cables using geared electric motors, to create peak forces in the suit of up to 200 N. We define the suit–human series stiffness as an important parameter in the design of the exosuit and measure it on several subjects, and we perform human subjects testing to determine the biomechanical and physiological effects of the suit. Results from a five-subject study showed a minimal effect on gait kinematics and an average best-case metabolic reduction of 6.4%, comparing suit worn unpowered versus powered, during loaded walking with 34.6 kg of carried mass including the exosuit and actuators (2.0 kg on both legs, 10.1 kg total).

C. L. Hastings, E. T. Roche, E. Ruiz-Hernandez, K. Schenke-Layland, C. J. Walsh, and G. P. Duffy, “Drug and cell delivery for cardiac regeneration,” Advanced Drug Delivery Reviews, vol. 84, pp. 85-106, 2015. Publisher's VersionAbstract

The spectrum of ischaemic cardiomyopathy, encompassing acute myocardial infarction to congestive heart failure is a significant clinical issue in the modern era. This group of diseases is an enormous source of morbidity and mortality and underlies significant healthcare costs worldwide. Cardiac regenerative therapy, whereby pro-regenerative cells, drugs or growth factors are administered to damaged and ischaemic myocardium has demonstrated significant potential, especially preclinically. While some of these strategies have demonstrated a measure of success in clinical trials, tangible clinical translation has been slow. To date, the majority of clinical studies and a significant number of preclinical studies have utilised relatively simple delivery methods for regenerative therapeutics, such as simple systemic administration or local injection in saline carrier vehicles. Here, we review cardiac regenerative strategies with a particular focus on advanced delivery concepts as a potential means to enhance treatment efficacy and tolerability and ultimately, clinical translation. These include (i) delivery of therapeutic agents in biomaterial carriers, (ii) nanoparticulate encapsulation, (iii) multimodal therapeutic strategies and (iv) localised, minimally invasive delivery via percutaneous transcatheter systems.

P. Polygerinos, et al., “Modeling of Soft Fiber-reinforced Bending Actuators,” IEEE Transactions on Robotics, vol. 31, no. 3, pp. 778-789, 2015. Publisher's VersionAbstract

Soft fluidic actuators consisting of elastomeric matrices with embedded flexible materials are of particular interest to the robotics community because they are affordable and can be easily customized to a given application. However, the significant potential of such actuators is currently limited as their design has typically been based on intuition. In this paper, the principle of operation of these actuators is comprehensively analyzed and described through experimentally validated quasi-static analytical and finite-element method models for bending in free space and force generation when in contact with an object. This study provides a set of systematic design rules to help the robotics community create soft actuators by understanding how these vary their outputs as a function of input pressure for a number of geometrical parameters. Additionally, the proposed analytical model is implemented in a controller demonstrating its ability to convert pressure information to bending angle in real time. Such an understanding of soft multimaterial actuators will allow future design concepts to be rapidly iterated and their performance predicted, thus enabling new and innovative applications that produce more complex motions to be explored.

P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft Robotic Glove for Combined Assistance and at-Home Rehabilitation,” Robotics and Autonomous Systems (RAS) Special Issue on Wearable Robotics, vol. 73, pp. 135-143, 2015. Publisher's VersionAbstract

This paper presents a portable, assistive, soft robotic glove designed to augment hand rehabilitation for individuals with functional grasp pathologies. The robotic glove utilizes soft actuators consisting of molded elastomeric chambers with fiber reinforcements that induce specific bending, twisting and extending trajectories under fluid pressurization. These soft actuators were mechanically programmed to match and support the range of motion of individual fingers. They demonstrated the ability to generate significant force when pressurized and exhibited low impedance when un-actuated. To operate the soft robotic glove, a control hardware system was designed and included fluidic pressure sensors in line with the hydraulic actuators and a closed-loop controller to regulate the pressure. Demonstrations with the complete system were performed to evaluate the ability of the soft robotic glove to carry out gross and precise functional grasping. Compared to existing devices, the soft robotic glove has the potential to increase user freedom and independence through its portable waist belt pack and open palm design.