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a b s t r a c t

This paper proposes an analytical approach to the robust design of mechanisms, to achieve motion and
accuracy requirements given a desired transmission ratio and allowable geometrical variations. The focus
is on four-bar and slider-crank mechanisms, which are common elements for the transmission of rotary
motion, especially over distances, which are too big for the use of conventional elements such as gears,
and motion along a predefined guide-curve, which often is a straight line. For many power transmission
applications, a constant relation between the motions of an input and corresponding output element is
required. For a four-bar linkage, a value of 1 is the only possible constant transmission ratio—achieved
when the mechanism has a parallelogram configuration. In the case of a slider-crank linkage a constant
ransmission ratio
echanism

olerance sensitivity
ingularity
ollowing error
ynchronous motion

transmission ratio can be achieved with a properly designed circular guide-curve, which makes the slider-
crank essentially equivalent to a four-bar. In practice, however, as a result of variations in link lengths
due to manufacturing tolerances and load-induced or thermal deformations, the transmission ratio for a
parallelogram four-bar linkage will deviate substantially from its ideal theoretical value of 1. Even small
changes in link lengths due to deformations or joint backlash can cause unacceptable instantaneous

ions.
be a
obust design

transmission ratio variat
slider-cranks but can also

. Introduction

When cost or space constraints restrict the use of multiple actu-
tors and feedback control, a one degree of freedom/single input
echanism can be used to transfer power from a single actuator

o two or more output components of a machine system. If syn-
hronous motion between the output components is required then
his necessitates a transmission ratio of 1 between them.

When transmitting power over distances that are too large
or conventional transmission elements such as gears, a four link

echanism offers a simple means of power transmission. Using
inged or prismatic joints, four basic types of four link mechanisms
re possible; the four-bar linkage, slider-crank, elliptic trammel and
apson slide [1]. All four types are shown in Fig. 1. Each of the mech-
nisms has a single degree of freedom and they are fully described
y a single input with the output defined by some trigonometric
unction of the input angle and the link lengths.
In order to transmit synchronous motion, a parallelogram four-
ar linkage can be used—for instance in the design of parallel
echanisms with two to six degrees of freedom [2]. A schematic

f a generic four-bar linkage is shown in Fig. 2 with link lengths
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labeled. For the parallelogram configurations the input and output
links will have the same lengths (i.e. a = c), as will the rocker and
fixed links (i.e. b = d). In this configuration the input angle, �1, will
always equal the output angle, �2.

However, any asymmetry in the mechanism will create singu-
larities and therefore a configuration dependent transmission ratio
resulting in errors in position and velocity between the ideally syn-
chronized components. Furthermore, given that a parallelogram
four-bar linkage is a borderline Grashof four-bar linkage, any varia-
tions in link lengths prevents coupled 360◦ rotation of the input and
output links. Specifically, the output link will only be able to oscil-
late over an angular range of less than 180◦. As mentioned, a perfect
parallelogram four-bar linkage allows for continuous, synchronous
rotation of the input and output links.

Deviation of link lengths from their ideal values can occur due
to manufacturing tolerances and thermal or load-induced deforma-
tions. Any manufacturing process is associated with a dimensional
tolerance that leads to variations in part dimensions and gener-
ally, the cost of manufacturing increases exponentially for closer
tolerances [3]. Load-induced and mechanism position dependent
deflection of the structure and bearings can also cause effective
link length errors. These deflections are often distributed through-

out the structure and a method for lumping them at discrete points
must be devised (typically the bearing interface as it is often the
most compliant part of the structure) [4]. The stiffness of the indi-
vidual components can be computed by means of beam theory for
simple parts or finite element analysis for parts with more compli-
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Fig. 1. Four possible types of four link mechanisms: (a) four-bar linkage: all four
joints as revolute joints, (b) slider-crank mechanism: two revolute and one pris-
matic joint, (c) elliptical trammel linkage: two revolute and two prismatic joints on
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he same links. The name stems from the fact that the paths of all points on the
oupler are ellipses, and (d) rapson slide linkage: this has two revolute joints and
wo prismatic joints but they are not on the same links.

ated geometry and then with knowledge of the forces in the links,
stimates of the deflections can be obtained.

In order to design different kinds of mechanisms and predict
heir performance various kinematic techniques have been pro-
osed. Fogarasy and Smith showed how mechanism constraint
quations could be used in the tolerance analysis of mechanisms to
redict the influence of manufacturing tolerances on the kinematic
erformance of mechanisms [5]. Hartenberg and Denavit differen-
iated the displacement equation of a four-bar function generator
o derive the expression of the output sensitivity to link length per-
urbation [6]. Faik and Erdman performed a dimensional analysis
o establish the relationship between the proportions of a mech-
nism and its sensitivity [7]. Furthermore the transmission angle
see Fig. 2) has been proposed as a means to evaluate the qual-
ty of motion transmission in a mechanism [8]. It is defined as the
maller angle between the direction of the velocity difference vec-
or of the driving link and the direction of the absolute velocity
ector of the output link both taken at the point of connection (this
s the angle between the coupler and output link for the four-bar
inkage). When the transmission angle is close to 90◦ a mechanism
as the most effective force transmission and a low sensitivity to
anufacturing tolerances of link lengths [9].
In this paper we show how the mechanism transmission ratio,
erived from the kinematic constraint equation, can be a useful
uantity in the design and analysis of four-bar linkages and provide
brief case study for a synchronous motion machine system.

ig. 2. Four-bar linkage notation. The transmission angle, �, is defined as the angle
etween the follower link, b, and the coupler, c, of the four-bar linkage.
ineering 34 (2010) 790–797 791

2. Transmission ratio of single degree of freedom planar
mechanisms

For planar mechanisms, each link has three degrees of free-
dom; two translational and one rotational. When links are joined
together, constraint relations reduce the number of generalized
coordinates needed to describe the system. The mobility, m, of a
mechanism (or its degrees of freedom) can be calculated using the
Kutzbach–Gruebler equation:

m = 3(n − 1) − 2j (1)

where n is the number of links and j is the number of total joints.
For planar mechanisms each joint can either be a single degree of
freedom revolute or prismatic joint. For the case that a mechanism
has a mobility of one, we typically define an input link and an output
link. The configuration of a single degree of freedom mechanism can
be described by one generalized coordinate, q.

2.1. Kinematic constraint equation

The kinematic constraint equation is determined from the
geometry of the mechanism. It is based on the fact that there are
two different but equivalent paths connecting two points on the
same vector loop. For any single degree of freedom mechanism the
general form of the constraint equation is some function, f, of the
generalized coordinate q.

f (q) = 0 (2)

2.2. Transmission ratio

The mechanism transmission ratio can be found by taking the
derivative of the constraint equation with respect to the general-
ized coordinate.

df

dq
= 0 (3)

The transmission ratio relates the incremental changes in position
(velocity) of the generalized coordinate to incremental changes in
the output variables of the mechanism. With qout being an output
variable of the mechanism, the transmission ratio is given by:

r = ıqout

ıq
(4)

3. Four-bar linkage

A generic four-bar linkage was shown in Fig. 2. Using the
Kutzbach–Gruebler equation we can demonstrate that this mecha-
nism has a mobility of one with Eq. (5) as the kinematic constraint
equation.

a2 − b2 + c2 + d2 − 2ad cos(�1) + 2cd cos(�2) − 2ac cos(�1 − �2) = 0

(5)

The output angle, �2, can be found as a function of link lengths and
input angle, �1, by solving:

A1 + A2 cos(�2) + A3 sin(�2) = 0 (6)

where
A1 = a2 − b2 + c2 + d2 − 2ad cos(�1) (7)

A2 = 2cd − 2ac cos(�1) (8)

A3 = −2ac sin(�1) (9)
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The sensitivity of the transmission ratio to errors in the link
lengths can be determined by taking its partial derivate with
respect to each of the link lengths. If the equation should not be
readily differentiable, the sensitivity can be calculated numerically

Table 1
Effect of change in linkage type caused by small link length variations with the
original linkage being a parallelogram with a = c, b = d and b > a, a rocker only does
intermittent motion while a crank can rotate 360◦ .

Link Increase in link length Decrease in link length

a Rocker (input), crank (output):
no continuous, 360◦ rotation of
input link possible.

Crank (input), rocker (output):
no continuous, 360◦ rotation of
output link possible.
ig. 3. The two possible positions (P and P′) of the point P for a given value of
2. There are two different possible values of �3 and two different values of �4

orresponding to the two possible positions of point P.

here are two solutions to Eq. (6) corresponding to the two possible
onfigurations of the four-bar linkage that are shown in Fig. 3.

an

(
�2

2

)
= −A3 ±

√
A2

3 − A2
1 + A2

2

A1 − A2
(10)

he negative solutions corresponds to the parallelogram configu-
ation for 0 < �1 < � and to the crossed configuration for � < �1 < 2�
nd these ranges are reversed for the positive solution.

.1. Transmission ratio

Taking the derivative of the kinematic constraint equation with
espect to �1 results in:

df

d�1
= 2ad sin�1 − 2cd sin�2

d�2

d�1
+ 2ac sin(�1 − �2)

(
1 − d�2

d�1

)
= 0

(11)

hich can be simplified to give the transmission ratio of the four-
ar linkage, rf.

f = d�2

d�1
= ω2

ω1
= ad sin(�1) + ac sin(�1 − �2)

cd sin(�2) + ac sin(�1 − �2)
(12)

or the parallelogram configuration of the mechanism, i.e a = c and
= d, the expression for the transmission ratio simplifies to:

f = b/a sin(�1) + sin(�1 − �2)
b/a sin(�2) + sin(�1 − �2)

(13)

ubstituting a for c and b for d in A1, A2 and A3 and simplifying Eq.
10) results in:

an

(
�2

2

)
=

(
1 ± b/a
1 − b/a

)
tan

(
�1

2

)
(14)

bviously �2 = �1 will always be the case for the negative solu-

ion which corresponds to the parallelogram configuration (range
< �1 < �). Substituting this into the expression for the transmission

atio, rf, reduced to unity for all input angles. For the crossed four-
ar linkage configuration (positive solution for 0 < �1 < �), it can be
roven using L’Hopital’s rule, that �2 = −�1 only as the ratio b/a goes
Fig. 4. Transmission ratios of the four-bar linkage when a = c and b = d. The crossed
configuration approaches −1 as the ratio b/a tends to infinity. Note the switching
points at 0◦ , 180◦ , . . ., n × 180◦ .

to infinity. Substituting �2 = −�1 into Eq. (13) and once more using
L’Hopital’s rule for b/a going to infinity, the transmission ratio, rf,
goes to −1.

Fig. 4 shows a plot of the parallelogram transmission ratio for
the two solutions as a function of input angle, �1, and b/a ratio. Link
a is given a length of 1 and the length of link b is varied starting at
a length of 1 in steps of 1 to a length of 10 (notation: b = 1:1:10).
Clearly, the negative solution (solid black lines) corresponds to the
parallelogram in the range 0 < �1 < � (i.e. rf = 1 and it is indepen-
dent of the ratio b/a) and the crossed configuration in the range
� < �1 < 2�.

It should be noted that a parallelogram four-bar can switch
into the crossed configuration and vice versa at 0◦, 180◦, 360◦, . . .
(i.e. whenever all four links are aligned as the input and output
link pass through 0◦ or 180◦). However, assuming no switching
between the two possible linkage configurations occurs, the input
and output as well as coupler and fixed links remain parallel to
each other—allowing synchronous motion to be achieved over the
entire angular range of the input link. However, slight variation in
the length of the links will make this impossible as is discussed
Table 1.

3.2. Transmission ratio sensitivity
b Double rocker Double rocker
c Crank (input), rocker (output):

no continuous, 360◦ rotation of
output link possible

Rocker (input), crank (output):
no continuous, 360◦ rotation of
input link possible.

d Double rocker Double rocker
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ing to the two possible configurations of the slider-crank linkage.

tan

(
�3

2

)
= −B3 ±

√
B3

2 − B1
2 + B2

2

B1 − B2
(21)
ig. 5. Sensitivities of the transmission ratio when a = c and b = d to changes in the le
xist at 0◦ and 180◦ . The solid black lines corresponds to the negative solution (para

s shown in Eq. (13) where � is a very small deviation in a link
ength (∼0.0001).

∂rf

∂a
= rf (a + �, b, �1) − rf (a − �, b, �1)

2�
(15)

n Fig. 5, the sensitivities of the transmission ratio for the parallel-
gram configuration (Eq. (15)) to changes in the lengths of link a,
, c and d are shown as a function of input angle and the ratio of
/a. Again, the solid black lines corresponds to the negative solution
parallelogram in the range 0 < �1 < � and the crossed configuration
n the range � < �1 < 2�).

. Slider-crank

The slider-crank is a common linkage that is used to convert
otary motion to motion along a predefined guide-curve or vice
ersa. The analysis presented in this paper will be limited to slider-
ranks with either a circular or a straight guide-curve (track), also
alled circular or straight slider-crank. However, the presented
asic analysis technique can easily be generalized to any other
iven guide-curve.

.1. Straight slider-crank

An illustration of a slider-crank with the end-point movement
onstrained to be along a linear track of slope m is shown in Fig. 6.

The mobility of the mechanism is 1 as the slider guide-way

mposes a constraint on the system that otherwise would be a two
egree of freedom two-link-manipulator. The kinematic constraint
quation can be derived to be:

as (sin(�1) − m cos(�1)) − y0] − bsm cos(�3) + bs sin(�3) = 0 (16)
f links a, b, c and d as a function of the ratio, b/a, and the input angle, �1. Singularities
ram in the range 0 < �1 < � and the crossed configuration in the range � < �1 < 2�).

again, as with the four-bar linkage constraint equation, the output
angle, �3, can be found as a function of link lengths and input angle
by solving:

B1 + B2 cos(�3) + B3 sin(�3) = 0 (17)

where

B1 = −y0 + as (sin(�1) − m cos(�1)) (18)

B2 = −bsm (19)

B3 = bs (20)

Similar to the four-bar linkage, there are two solutions correspond-
Fig. 6. Slider-crank with end-point riding on a straight line.
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1% longer than specified, causing asymmetry and a deviation from
the desired parallelogram configuration of the four-bar linkage. For
simplicity, we will assume that there are no dimensional errors
for all other link lengths of the four-bar linkage and slider-crank

Table 2
Parameter values for four-bar linkage and slider-crank for case study.

Four-bar linkage Slider-cranks
Fig. 7. Slider-crank with end-point riding on a circular path.

ifferentiating the kinematic constraint equation for a straight
lider-crank, Eq. (16), the transmission ratio between the output
nd input angles reduces to:

�1�3
= d�3

d�1
= ω3

ω1
= as (cos(�1) + m sin(�1))

bs (cos(�3) + m sin(�3))
(22)

he transmission ratio relating the output tangential velocity along
he straight path, vt , to the input angular velocity, ω1, is

ss = vt

ω1
=

√
a2

s + r2
�1�2

b2
s + r�1�2

bs cos(�1 − �3) (23)

.2. Circular slider-crank

As was mentioned earlier, another variation of a slider-crank is
or the case when the end-point of the link is constrained to ride
long a circular path, Fig. 7.

For this case, the kinematic constraint equation can be derived
o be:

2
s + b2

s + x2
0 + y2

0 − R2 + 2asbs cos(�1 − �3) . . . . . .

− 2
[
x0(as cos�1 + bs cos�3) + y0(as sin�1 + bs sin�3)

]
= 0 (24)

gain, the output angle, �3, can be found as a function of the input
ngle, �1, by solving Eq. (17) but now with the following values for
he coefficients:

1 = a2
s + b2

s + x2
0 + y2

0 − R2 − 2y0as sin(�1) − 2x0as cos(�1) (25)

2 = 2asbs cos(�1) − 2x0bs (26)

3 = 2asbs sin(�1) − 2y0bs (27)

ith xt being the position of the slider end and vt its velocity tangen-
ial to the guide-curve, the transmission ratio for the slider-crank
ith a circular guide-curve can be derived from its kinematic con-

traint equation to be:

sc = dxt

d�1
= vt

ω1
= asR sin(�1 − �3)

(x0
2 + y0

2)1/2 sin(�3 − ϕ) + as sin(�1 − �3)
(28)

It should be noted that the circular slider-crank corresponds to a
our-bar linkage with the constraint of the c link replaced by a circu-
ar guide-way. Consequently, in the case of a circular slider-crank,
t is possible to achieve a constant transmission ratio, rsc (equiva-
ent to a parallelogram four-bar). However, the straight slider-crank
oes not have any constant transmission ratio. The transmission

atio sensitivity of a slider-crank can be analyzed using the same
athematical method that was demonstrated for the parallelo-

ram four-bar linkage.
It should be noted that due to typically wider manufacturing

olerances/errors in prismatic joints (or sliders) compared to pivots
Fig. 8. Synchronous motion mechanism where a four-bar linkage couples the
motion of two slider-cranks.

of similar cost, it is advisable to avoid designs with circular slider-
cranks unless space constraints prevent the use of a functionally
equivalent four-bar linkage.

5. Case study

5.1. Synchronous motion mechanism

As an example, consider the mechanism in Fig. 8 that is designed
to produce synchronous motion between the end-points of two
links riding in circular tracks. It consists of two identical slider-
cranks that are coupled by a parallelogram four-bar linkage.

An actuator is assumed to drive the left input angle, �l, of the
four-bar linkage, to which the left slider-crank is directly cou-
pled. It is assumed that the range of motion for the input link is
50◦ ≤ �l ≤ 130◦, thus not passing through 0◦ or 180◦ so as to avoid
singularities. The right side slider-crank is directly coupled to the
output link of the four-bar linkage. Should it be possible to ensure
that the links are manufactured precisely and sufficiently stiff so
as to not significantly deform under any applied load, smaller than
the stall torque of the motor, then the right slider end-point would
exactly track the left slider end-point, i.e. there would be zero fol-
lowing error and the end-points would move in synchrony. The
end-points of the left and right slider-cranks are (xl, yl) and (xr, yr),
respectively.

5.2. Link length variation

In order to simulate the effect of variations in link lengths on
the transmission ratios and following errors of the mechanism, the
parameters of the mechanism illustrated in Fig. 8 are given the val-
ues shown in Table 2. The labeling for the four-bar and slider-cranks
corresponds to that used in Figs. 3 and 7.

The values in Table 2 indicate that the four-bar linkage is in
the parallelogram configuration and thus with a nominal angular
transmission ratio of 1. The b/a ratio was chosen to be 10 to mimic a
typical application where a linkage is used to transmit motion over
a long distance. However, let us now consider the case when link b is
a 1 as 2
b 10 bs 5
c 1 x0 3
d 10 y0 0.25

R 4
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ig. 9. Transmission ratios for four-bar linkage, rf (top), left circular slider-crank and
four-bar × right circular slider-crank), rscl and rscr (bottom).

echanisms. The effect of the error in the length of link b on the
ransmission ratios is visualized in Fig. 9.

The four-bar linkage transmission ratio deviates significantly
rom the ideal value of 1 over the input range (−10% ≤ r ≤ +20%).
he effect of this is to also cause a difference in the slider-crank
ransmission ratios for a given input angle, �l. This is because the
utput angle of the four-bar linkage no longer equals the input angle
the output angle of the four-bar linkage is the input angle of the
ight slider-crank).

.3. Following error

This difference between the input and output angle of the
our-bar linkage (defined as the angular following error) can be
alculated using the transmission ratio. The incremental angular
ollowing error, ı�err, can be defined in terms of the incremental
ngular input, ı�l, and the four-bar linkage transmission ratio, rf.

�err = ı�l − ı�r = (1 − rf )ı�l (29)

his incremental error can then be integrated over the input range
o find the total angular following error, �err.

err =
∫ �l,end

�l,start

(1 − rf )ı�l (30)

Further, the transmission ratios can be combined in the case of
oupled mechanisms to find the overall following error without
aving to compute the transmission ratio for the entire mecha-
ism. For this mechanism, the total end-point following error of
he complete mechanism is defined as the tangential difference
etween the end positions of the two slider-cranks, Xterr. Its incre-
ental value can be calculated in a similar manner to the angular

ollowing error.

Xterr = ıXtl − ıXtr = ı�lrscl − ı�rrscr = (rscl − rf rscr)ı�l (31)

hich can be integrated over the input range to find the total fol-
owing error between the end-points of the slider-cranks

terr =
∫ �l,end

(rscl − rf rscr)ı�l (32)

�l,start

The above equations illustrate that the transmission ratio of a
echanism can be used to calculate the following error. For the

imple case study presented in this paper, the angular and end-
Fig. 10. Plot of the angular and end-point following error comparing the values
obtained using Eqs. (30) and (32) with Eqs. (33) and (34), respectively. As expected,
the curves methods match identically.

point following errors of the synchronous motion mechanism can
easily be calculated from Eqs. (33) and (34)

�err = �l − �r (33)

Xterr =
√

(xl − xr)2 + (yl − yr)2 (34)

Fig. 10 plots the following errors using the two methods
described. For ease of comparison and clarity, the following errors
from Eqs. (33) and (34) are plotted only at discrete points. However,
the curves are identical over the entire input range as expected.

6. Conclusions

Based on the example of four-bar linkages and slider-crank
mechanisms, a method was presented to derive the transmission
ratio of a single degree of freedom mechanism from its respective
kinematic constraint equation. The transmission ratio, along with
its sensitivity to geometrical variations, can then be used to predict
the performance for a given mechanism design.

It was shown that a constant transmission ratio of unity can be
achieved by a parallelogram four-bar linkage or its equivalent cir-
cular slider-crank. Reversal of direction of rotation between input
and output can be achieved in the corresponding crossed config-
uration of the four-bar which also has an equivalent slider-crank.
However, a constant transmission ratio of −1 over 360◦ of input
motion can only be achieved for a coupler-input link length ratio of
infinity and thus is practically not feasible. Furthermore, for a par-
allelogram four-bar linkage, it was shown that a transmission ratio
of 1 is highly sensitive to variations in the lengths of the links and
thus care must be taken to understand how it deviates from unity
as a function of dimensional tolerances, operating range, coupler-
input link length ratio and mechanism configuration. E.g. for the
parallelogram configuration with a link length ratio b/a of ten, 1%
variation in the length of link b results in an angular following error
between −11% and 14% over an input range of motion of 80◦.

Based on a case study of a synchronous motion mechanism con-
sisting of two slider-cranks that are coupled by a four-bar linkage, it

was demonstrated how small (undesired) deviations in the rocker
link length, and subsequently the transmission ratio, can cause
significant following errors between the two ideally synchronized
outputs of the mechanism.
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ppendix A. Link forces in four-bar linkage and
lider-crank

.1. Static equilibrium

Newton’s first two laws of motion are that, if a body is at rest,
he sum of all forces acting on the body must be zero. Further, the
um of the moments of those forces about any point must also be
ero. Thus for any member of the structure

Fx = 0 and
∑

Fy = 0 (A1.1)

Mo = 0 (A1.2)

here
∑

Fx and
∑

Fy are the sum of all forces acting on the body
n the x and y directions, respectively (with respect to the reference
oordinate system) and

∑
Mo is the sum of the moments of those

orces about any chosen point, o. The basis of the static force analy-
is of any structure is the algebraic solution of the static equilibrium
quations written for every member of the system.

.2. Free body diagrams

The forces in each of the links of the four-bar mechanism can be
alculated based on a static analysis of the mechanism. The usual
pproach to solving this problem is to sketch a free body diagram
or each member of the mechanism. All forces acting on each mem-
er, including the forces of action and reaction between members,
s well as externally applied loads must be indicated on the free
ody diagram. The forces that can be transmitted across an ideal
frictionless) kinematic joint are related to the motions permitted
y that joint. Basically, the work done by the transmitted forces

n the directions of permitted motion must be zero. For example,
revolute joint permits rotation about its axis. Any force that is

ormal to that axis and whose line of action intersects it does no
otational work. Therefore, any force component in the plane of
otion passing through the joint axis is transmitted. It is usually

onvenient to represent this set of possible forces by two compo-
ents parallel to the x and y axis directions of the fixed reference

rame.

.3. Force analysis

The force Fab is interpreted as the force that link a exerts on
ink b and force Fba is the force that link b exerts link a and these
re obviously equal and opposite as discussed above. If a force is
ot an internal force between two rigid bodies, the subscript will
orrespond to the location where the force is applied or to the type
f force. For a force analysis, we must know the coordinates of all

oints involved in the analysis. Therefore, before a force analysis
an be conducted a positional analysis must be done as described
arlier. The position equations will be nonlinear but the equations
or the forces will be linear and can easily be solved as is outlined
ere.
Fig. 11. Free body diagram for four-bar linkage.

A.4. Four-bar linkage

The free body diagram of a four-bar mechanism is shown in
Fig. 11. The input torque is applied to link a, e.g. by a motor.

Applying force and moment balance to each of the links in the
free body diagram allows each of the forces in the four-bar mech-
anism to be calculated. The output torque that is calculated is the
input torque that is applied to the secondary slider-crank mecha-
nism. The equations are as follows.

Fba = 	

a · cos(�3 + 90 − �1)
(A1.3)

Fda = −Fba · cos(�3) (A1.4)

R1 = Fba · sin(�3) (A1.5)

Fab = −Fba (A1.6)

Fcb = Fab (A1.7)

Fbc = −Fcb (A1.8)

Fdc = −Fbc · cos(�3) (A1.9)

R2 = −Fbc · sin(�3) (A1.10)

	out = Fbc · c · cos(�3 − 90 − �2) (A1.11)

These equations also allow the force in each link to be calculated
for any configuration of the mechanism. The stiffness of the links
calculated using finite element analysis. Combining these with the
forces allows the deflections (and resulting errors) of the various
links of the mechanism to be calculated.

A.5. Slider-crank

The free body diagram of the slider mechanism is shown in
Fig. 12. The input torque is applied to link as e.g. by a motor. The
output force is calculated.

In general, the forces can only be applied in the direction of the
links. Therefore:

R = F (A1.12)

T = F

[
cos(�3)
sin(�3)

0

]
×

[
a cos(�1)
a sin(�1)

0

]

The forces tangential and perpendicular to the curve are given by:

F|| = F cos(˛)
F⊥ = F sin(˛)

(A1.13)
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Fig. 12. Free body diagram for slider-crank.

hich can be expressed as:

F|| = T cos(˛)
as sin(�1 − �3)

F⊥ = T sin(˛)
as sin(�1 − �3)

(A1.14)

inally, the frictional force can be obtained from:

friction = �F⊥ = �
T sin(˛)

as sin(�1 − �3)
(A1.15)

.6. A note on load-induced deflection

So far we have only discussed the effect of errors in the link
engths on the transmission ratio and following errors. While there

ill always be some variation as a result of manufacturing toler-
nces, links may also deviate from there nominal length as a result
f loads on the mechanism. However, the difficulty in modeling
oad-induced errors lies in their often distributed and/or varying
ffects. They are often distributed throughout the structure, and
hus in order to calculate the resulting errors in a mechanism, a

ethod for lumping them at discrete points must be devised. Bear-
ng interfaces are often chosen as the location to lump load-induced
rrors because they define the kinematics of the mechanism and
re often the most compliant parts of the mechanism. Appendix
outlines the methods to calculate the link forces for the four-

ar linkage and slider-crank. In general, the forces depend on the

onfiguration of the mechanism and so a position analysis must be
erformed first. In a next step the forces parallel and perpendicular
o each link have to be calculated. This should be an easy task once
he forces in the x and y directions have been obtained. The stiff-
ess of the individual components can then be computed by means

[

[

[
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of beam theory for simple parts or finite element analysis for parts
with more complicated geometry.

The procedure for determining the following error between the
end-points of the two slider-cranks due to load-induced deforma-
tion in the above case study is as follows:

1. Set the initial input angle of the four-bar linkage.
2. Find the change in this angle due to bending of link a and add

it to the input angle to get a new input angle.
3. Find the change in all of the link lengths due to the force com-

ponents along their lengths.
4. Find the new output angle based on change in input angle and

link lengths.
5. Find the change in the output angle due to bending of link c and

add it to get a new output angle.
6. This is the new input angle to the secondary slider-crank.
7. Find the change in the slider-crank input angle due to bending

of link as of the slider-crank and add it to the input angle to get
a new input angle.

8. Find the change in all of the link lengths due to the force com-
ponents along their length.

9. Find the new configuration of the slider-crank based on change
in input angle and link lengths.

10. Find the new end position of the slider-crank.
11. Calculate the error between this new position and the position

calculated from the kinematics originally.
12. Recalculate the forces with using the deformed link lengths.
13. Compare the forces as calculated in step 12 to the originally

calculated forces. This will give you an error measure for the
accuracy of your analysis—remember forces are configuration
dependent and thus forces might change as the mechanism
deforms.
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