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Abstract— Magnetic localization systems based on passive
permanent magnets (PM) are of great interest due to their
ability to provide non-contact sensing and without any power
requirement for the PM. Medical procedures such as ven-
triculostomy can benefit greatly from real-time feedback of
the inserted catheter tip. While the effects of the number
of sensors on the localization accuracy in such systems has
been reported, the spatial design of the sensor layout has
been largely overlooked. Here in this paper, a framework
for determining an optimal sensor assembly for enhanced
localization performance is presented and investigated through
numerical simulations and direct experiments. Two approaches
are presented: one based on structured grid configuration and
the other derived using Genetic Algorithms. Simulation results
verified by experiments strongly suggest that the layout of the
sensors not only has an effect on the localization accuracy, but
also has an effect far more pronounced than improvements
brought by increasing the number of sensors.

I. INTRODUCTION

Magnetic field-based localization systems are used widely
in robotics and automation for online and contact-free track-
ing of all kinds of devices and objects. The human body is
not affected by static fields, which are generally regarded as
safe. Recently a plethora of new developments in biomedical
and surgical applications have taken advantage of this to
make use of magnetic field based sensing technology to
localize instruments and track them non-invasively in real
time while deep inside the body. Such tool will also pave
the way for clinical procedures to be performed with high
precision with robotic assistance or even by a fully auto-
mated system. Much research has been pursued to enhance
the performance of magnetic localization through improved
algorithms and field models [1], [2]. But a key element, the
design of the magnetic sensor assembly, and in particular,
the spatial design of the sensor network, has been largely
overlooked and neglected. Hence this paper is focused on
the spatial optimization of a magnetic localization system
for enhanced performance.

The insertion of flexible catheters into the body is an excel-
lent example of a procedure that can benefit from magnetic
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localization technology. Ventriculostomy is a neurosurgical
procedure that involves inserting a catheter through a burr
hole on the skull to access the ventricles for drainage.
Although this procedure is conducted by skilled and ex-
perienced practitioners, placement accuracy is low because
the insertion is performed blindly and the clinician has no
visual feedback of the location of the catheter tip. It is not
uncommon to require multiple passes to reach the target,
with each unsuccessful and misplaced pass increasing the
likelihood of morbidity and hemorrhagic complications [3].
By embedding a small permanent magnet (PM) at the distal
tip of the cannula or the stylet guiding the catheter, external
magnetic sensors can be employed to determine the position
of the magnet inside the head.

Several such magnetic localization systems utilizing pas-
sive magnets have been investigated in the last decade [4]–
[7]. Almost all of these systems are based on a 2D-array
of multi-axis sensors uniformly arranged on a square grid
pattern. While there has been considerable analysis concern-
ing the number of sensors on localization performance [8],
[9], questions remain regarding the spatial design compo-
nent of the sensing system. For example, even if a square
grid arrangement could be justified, there is no scheme to
determine the optimal grid spacing. It is possible that the
lack of knowledge in this area can be attributed to the fact
that these sensing systems were not designed for any specific
application.

Ventriculostomy is a highly repetitive procedure in which
the trajectory does not deviate significantly from one adult to
another. For this kind of intervention, it is possible to design
a sensing system based on a reference trajectory. The work
presented here is aimed at developing a framework in which
an optimized arrangement of sensors can be determined
when the repetitive localization trajectory is known a priori.
Ventriculostomy catheter insertion is used as a example in
this paper.

A key issue in searching for an optimal arrangement of
sensors, especially when the number of sensors is large, is
that traditional calculus-based and enumerative search algo-
rithms are inefficient and biased to local stationary points.
Thus genetic algorithms (GAs) which are often used to solve
non-deterministic optimization problems due to their ability
to search a wide range of the solution space rapidly [10], are
incorporated into our approach.

The remainder of the paper presents:
1) An approach that seeks to determine an optimal config-

uration of field sensors while taking into consideration
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a reference trajectory.
2) Two contrasting spatial design schemes, one based on

optimizing a structured rectangular grid pattern and
another pattern achieved using GAs.

3) Numerical and experimental evaluation of a
rectangular-based and GA-derived sensing system.

II. SPATIAL DESIGN OF MAGNETIC LOCALIZATION
SYSTEM

The majority of magnetic localization systems that feature
an untethered PM tracked by a spatial set of sensors are
designed with the magnetic sensors distributed evenly and
regularly in a grid within a 2D plane. Here an alternate
approach is described, which takes into consideration the
target trajectory, to determine an optimal configuration of
sensors constrained in a rectangular grid arrangement and an
unconstrained option using GAs. While the localization of a
catheter inside brain is used as a scenario to illustrate this
method can be applied to other applications such as tracking
of robotic endoscopes and steerable needles.

A. Representative Trajectory

The mean distance traveled by the catheter tip from
the burr entry hole to the ventricles during interventional
procedures has been estimated to be 55-60 mm [11] while
the distance, as measured by 78 fellows and residents, in a
virtual reality workstation was an average of 63.63 mm [12].
These studies reveal that the distance traveled has relatively
low variance and a representative trajectory can be used for
the basis of design of a localization and tracking system.

Using a set of CT images of a fully inserted catheter in
into the head of an anonymous patient and image processing
software to perform segmentation to distinguish the foreign
catheter, the path coordinates taken by the catheter, the
catheter itself and the surrounding skull can be extracted.
This segmentation was achieved using ImageJ [13]. Fig. 1(a)
shows a sagittal CT image with the skull and catheter
path highlighted in green and red respectively. With post-
processing software, ITK-SNAP (www.itksnap.org) [14], a
3D rendering of the skull and inserted catheter can be
constructed as shown in Fig. 1(b), which allows the path
to be characterized completely in the horizontal, coronal
and sagittal anatomical 2D planes for development of the
representative trajectory. The Euclidean distance between
the burr hole and the tip of the fully inserted catheter was
measured to be 60 mm.

B. Magnetic Field Modeling and Localization

The analytic dipole model is used widely to model per-
manent magnetic sources [4]–[6], [8], [15], [16]. Fig. 2
illustrates a single magnetic source in free space at Pm =
(a, b, c)T and its attached magnetic field detected by an
arrangement of n sensors. The magnetic flux density, B, is
measured by the ith sensor at Ps,i = (xi, yi, zi)

T ,

B(Ps,i) =
µ0.mDM

4π

[
3Pi(U.Pi)

|Pi|5
− U

|Pi|3

]
(1)

Fig. 1. (a) Sagittal CT image of a patient’s head. (b) 3D rendering of part
of the skull with an inserted catheter extending from the burr hole to the
ventricles. The catheter (in red) is discriminated against the skull (in green).

Fig. 2. Magnet Dipole Model. Pm and Ps,i are the position coordinates
of the magnet and ith sensor, respectively with regard to the origin O. U
is the magnet’s magnetization vector.

in which µ0 is the magnetic permeability of free space, mDM
is the strength of the dipole moment of the magnet and U =
(u, v, w)T is the orientation of the magnetization vector of
the magnet at Pm. With this convention, the spatial vector
denoting the direction and distance of each sensor from the
magnet can be expressed as Pi = Ps,i −Pm.

In localizing the position and orientation of the source,
there are six unknowns in (1) which are a, b, c, u, v and
w. However, for a large majority of magnetic sources, such
as cylindrical magnets that possess axissymmetric geometry
(magnetization axis coincides with the axis of symmetry),
the magnetic flux density B is also invariant about this axis.
This constraint can be represented by

u2 + v2 + w2 = 1 (2)

which reduces the total number of unknowns to five. Hence, a
minimum of five independent magnetic sensor measurements
is required to determine the position and orientation of the
unknown source. This can be achieved through a collection
of single-axis sensors and/or multi-axis sensors.

If Bmeasured,i denotes the magnetic field measured at the
location of the ith sensor and Bmodel,i is the analytic model
field in (1), the error function decomposed into the orthog-
onal components (x,y,z) is defined as:

Ex,i =

N∑
i=1

(
Bx measured,i −Bx model,i

)2
(3)



Ey,i =

N∑
i=1

(
By measured,i −By model,i

)2
(4)

Ez,i =

N∑
i=1

(
Bz measured,i −Bz model,i

)2
(5)

The total objective error is simply the summation across the
x, y, z components and individual sensors:

E =

N∑
i=1

Ex,i + Ey,i + Ez,i (6)

By minimizing E through iterative nonlinear least-squares
optimization as outlined in [4], [6], the position a,b,c and
orientation u,v,w of the magnetic source can be estimated
from the array of n sensor measurements.

To evaluate the magnetic field-based tracking scheme, the
root mean squared error (RMSE) is used. For a collection of
N sample points over a specified trajectory, the positional
RMSE is defined as

RMSE =

√√√√√ 1

N

N∑
j=1

 (aestimated,j − atrue,j)
2 + ...

...+ (bestimated,j − btrue,j)
2 + ...

...+ (cestimated,j − ctrue,j)
2

 (7)

where j (1 ≤ j ≤ N ) is an integer representing the sample
index, aestimated,j is the estimated position obtained through
the nonlinear optimization and atrue,j is the actual position.

The MATLAB optimization toolbox (Mathworks, Natick,
MA) is used to implement the non-linear optimzation al-
gorithm. Unlike the fmincon function or lsqnonlin with a
trust-region-reflective algorithm, lsqnonlin with Levenberg-
Marquardt algorithm does not require any boundaries to be
specified. It is also faster and provides higher accuracy [17].
This is the solver that has been selected. However, because
it requires an initial guess of the searched parameters, a
MultiStart function has been incorporated into the algorithm
to avoid a failure in convergence. It generates start points and
repeatedly runs the local solver to obtain global minimum
and the lowest objective function value.

C. Optimal Sensor Arrangement

A key component that is often overlooked in develop-
ment of magnetic tracking and localization systems is the
spatial placement of the magnetic sensors. In particular,
the magnetic field model in (1) specifies that the sensor
location be known but does not where it should be. For
the procedure of catheter insertion during ventriculostomy,
this pertains to the positional distribution of the magnetic
sensors on the surface of the skull to detect the catheter
tip as it descends into the ventricles. The design method
utilized here seeks to determine an optimal set of sensors, and
their positions, for a specified path/trajectory. Optimality in
localization applications is defined as the spatial arrangement
that result in the lowest RMSE in (7).

Without loss of generality, a 2D Cartesian space is defined
and constrained to a bounded domain in which the sensors
can reside in. This space can be linearly transformed into

curvilinear coordinates for applications with curve surfaces.
Another constraint is the physical size of the sensors, which
must be considered to prevent their physical footprint from
overlapping. For n sensors, the number of combinations to
search through can be quite immense. For the ventricu-
lostomy catheter insertion, where the 2D sensor space is
delimited to 120 × 100 mm (limited by the size of the skull)
and populated by sensors with a footprint of 5 × 5 mm, the
total number of possible combinations is

Cn
12221 =

12221!

n!(12221− n)!
(8)

For an arrangement of nine sensors, there are 1.67 ×
1031 valid combinations. The sheer number of combinations
impedes exploration of all possible combinations using tradi-
tional optimization techniques. Hence, two approaches were
adopted to tackle the large search domain.

1) Rectangular Array: This approach reduces the com-
plexity of the spatial sensor placement by constraining them
into the vertices of a rectangular grid within the bounded 2D
sensor space as shown in Fig.3(a). While this constraints the
number of sensors distributed in the x and y direction, the
spacing between sensors in the x and y direction as well as
the location of the center of the grid are left unconstrained.
For certain n values, multiple configurations may be possible
(n = 10 permits 2 × 5 and 5 × 2 configurations). Using
the RMSE as the objective function, contemporary nonlinear
optimizing schemes can be used to iteratively determine the
unconstrained variables. The main advantage of using a grid
to constraint the sensor arrangement is that the number of
unconstrained variables is significantly reduced while still
maintaining uniform sensor distribution across the 2D sensor
domain. Such an approach may be more suitable when the
localization path is unknown or irregular but may not be
optimal for a specific application such as repetitive catheter
insertion trajectories. Moreover, having a rectangular grid
pattern restricts the number of sensors in the array. An
array of 13 sensors cannot be constrained into a regular grid
assembly.

2) Genetic Algorithm (GA): An alternative approach
seeks to tackle the large search in space by using GA,
which do not place any geometrical constraints on the sensor
arrangement and harness the search heuristic of biological

Fig. 3. Sensor arrangement in bounded 2D space. a) Rectangular array:
The parameters xspacing and yspacing are the spatial spacing between two
sensors and nbs in x and nbs in y are the number of sensors in x and
y direction respectively. b) GA pattern: The positional coordinate of each
sensor is (xi, yi)



Fig. 4. Flow chart of a GA optimization and genetic operators used to
vary the programming of individuals from one generation to the next. (a)
Crossover (b) Mutation

natural selection to determine the optimal arrangement of
sensors. In GA, an individual is referred to as a genome
and the vector entries of an individual as genes. Likewise,
a population represents an array of genes. The overall idea
behind GAs is to build better genes by somehow combining
the ”good” parts of other solutions through evolution, just
like nature does by recombining the DNA of living beings
[10]. Just like other optimization techniques, it uses a fit-
ness/objective function to evaluate the performance of each
gene. A flow chart that visually illustrates the principle of
GA optimization is presented in Fig. 4. A GA starts with an
initial population of genes, which are usually randomized,
and calculates the fitness functions of each gene. Using
this metric, certain individuals in the current population,
called parents, are used to create individuals in the next
generation, called children, using crossover and mutation.
Crossover is the process where two genes in a population
exchange some of their genomes to create a new, third gene.
Random substitution of the genome within a gene is defined
as mutation.

Adapting GAs into the spatial design of the 2D sensor
space requires that the space be first subdivided into a
fine grid pattern in which the vertices form nodes. Each
node of the grid, which is associated with a coordinate,
represents a possible sensor location (xi, yi). Considering
each of these coordinates as a genome, a gene is defined
as a concatenated vector (x1, y1, ... , xi, yi, ... , xn, yn)
containing positional coordinates of all sensors. A GA seeks
to evolve the gene over generations to produce offspring that
minimize the objective/fitness function, which is the RMSE
of the positional estimates in (7). A typical spatial sensor
arrangement corresponding to an arbitrary gene is shown in

Fig. 3(b). An initial population comprising of a collection of
randomized genes were implemented to ensure the diversity
of the population for effective crossover and mutation.

III. NUMERICAL SIMULATION

The two approaches in optimal spatial design of the sen-
sor arrangement are numerically evaluated and investigated.
The representative trajectory of the inserted ventriculostomy
catheter in Fig. 1 comprising of N = 56 sample points was
used to compute the fitness function in (7). To incorporate
robustness to the system, in addition to the N points of the
representative path, a buffer zone composed of the spatial
points within 10 mm of the trajectory is included for opti-
mization. The magnet is modeled after an axially magnetized
NdFeB grade N52 solid cylinder permanent magnet (K&J
Magnetics, Jamison, PA) with 3.2 mm diameter and 9.5 mm
length (D26-N52). The dipole moment of the magnet mDM

was experimentally determined to be 8.66× 104 Am2 using
field mapping and least-squares analysis detailed in [1].
Both approaches are limited to the 2D sensor space of
120 × 100 mm and simulate 3-axis magnetic field sensors.

For simulation of the spatial design based on the rect-
angular grid, the spacing between sensors in the x and
y direction varieds from 5 to 40 mm (in 1 mm integer
increments) and the number of sensors in each direction
was an integer between 2 and 10. The center of the grid
pattern was permitted to deviate 10 mm (in 1 mm integer
increments) from the centroid of the sensor space. In the
GA-based design, the node spacing was set to 1 mm and the
initial population comprised twice the number of genomes
(each genome is an x or y coordinate of a single sensor).
A minimum Euclidean spacing between sensors was set
to 5 mm to prevent physical interference. This starting
population contained randomized genes as well as those
derived from the rectangular grid optimization results. In
both approaches MATLAB’s lsqnonlin optimization function
was used with the Levenberg-Marquardt algorithm as the
solver. The GA-based approach additionally used the ga
function with the mixed integer optimization programming
option to ensure that all components of the gene are integers.

A. Localization Performance Comparison

Table I shows the simulated positional RMSE on the
localization of the catheter trajectory using rectangular arrays
and GA optimized arrangements for n = 9 to 18. The results
in Table I are grouped according to the number of sensors
implemented. Within each number of sensors, classification
was subdivided into different possible configurations for
the rectangular arrays. The spatial sensor spacing of each
optimally derived configuration is also appended in the
table. To visualize best-performing sensor designs, the spatial
position of each individual sensor in the 2D sensor space
is illustrated in the schematic in Fig. 5 for four selected
n values. The schematic also shows (in red) the projected
catheter trajectory in the z-plane.

From the Table I, it can be seen that in the absence
of noise, the theoretical RMSE of the GA-derived sensor



TABLE I
COMPARISON OF RMSE ACROSS DIFFERENT NO. OF SENSORS AND

SENSOR ARRANGEMENT. (* SIMULATION WITH 0.25 µT RMS NOISE)

Nb. of sensors Gride size RMSE (×10−7 mm) RMSE (×10−2 mm)

nbX×nbY X×Y (mm) Rect. GA Rect.* GA*

9 3 × 3 36 × 20 4.08 1.60 10.96 3.37

10
2 × 5 36 × 26 4.89

2.40
10.85

4.02
5 × 2 21 × 22 3.88 13.02

11 - - - - - 5.23

12

2 × 6 36 × 19 4.65

2.57

10.67

4.11
6 × 2 14 × 27 3.55 15.52
3 × 4 34 × 25 3.87 11.81
4 × 3 28 × 16 3.83 8.17

13 - - - - - 3.77

14
2 × 7 34 × 14 5.00

2.77
12.21

3.00
7 × 2 12 × 32 4.46 14.49

15
3 × 5 31 × 11 3.82

2.84
13.07

3.06
5 × 3 20 × 24 3.79 10.46

16
2 × 8 35 × 12 4.98

2.48
12.85

2.388 × 2 10 × 35 4.59 13.32
4 × 4 29 × 13 3.70 6.93

17 - - - - - 2.29

18

2 × 9 36 × 11 5.04

2.31

11.86

3.06
9 × 2 8 × 33 4.87 10.99
3 × 6 36 × 16 4.05 11.60
6 × 3 15 × 20 3.85 9.64

arrangements are on average 40 % lower than the rectangular
grid optimized designs across all sensors. The GA boards
were able to average an RMSE of 2.4 × 10−7 mm while the
rectangular grid-based boards could only muster an average
of 4.2 × 10−7 mm. Moreover, there is no visible correlation
between the number of sensors and RMSE. The best per-
forming rectangular grid board was a 3×4 configuration of
12 sensors, while the best GA-based board had nine sensors
board. This difference was anticipated because the numerical
effects of sensors are only visible in presence of noise.

A second simulation was performed while the measure-
ment signals of the sensors were corrupted by a Gaussian
noise with a standard deviation of ± 0.25 µT, corresponding
to the noise characteristics of a commercial magnetome-
ter: MAG3110 (Freescale Semiconductor, Austin, TX). The
RMSE resulting from this simulation are also appended in
Table I. To facilitate comparison, Fig. 6 shows the variation
of RMSE across the number of sensors in the presence of
noise. As expected, the RMSE decreased as the number
of sensors increased for both design approaches. However,
when depicted by the graph, the advantage of the GA-
based board over a rectangular grid-based board are more
noticeable. To put the data in perspective, a six-sensor GA
optimized board has a comparable RMSE to a 20-sensor rect-
angular grid-optimized board (0.065 mm vs 0.058 mm). As
shown in Fig. 7, rather than increasing the number of sensors
on the rectangular grid designs, it is more advantageous to
pursue a GA-based design.

Fig. 5. Comparison of Rectangular and GA-derived sensor arrangements.
Blue dots and purple squares represent individual sensor positions in the
GA-based and rectangular grid designs.

Fig. 6. Localization RMSE as a function of number sensors in presence
of Gaussian measurement noise.

Fig. 7. Absolute positional estimation error at various z displacement
across the trajectory path with four different simulated patterns.

IV. EXPERIMENTAL INVESTIGATION

To experimentally verify the simulation results, 6-axis
articulated robotic arm (VS-068, Denso Robotics, Aichi,
Japan) was used with a D26-N52 permanent magnet (same



as in the simulations) mounted at the end-effector of the
articulated arm (Fig. 8). Each of the six servomotors and
encoders on the robotic arm were powered and controlled us-
ing an integrated amplifier/controller (RC7, Denso Robotics,
Aichi, Japan). The robotic arm has a positional repeatability
of 0.02 mm. Customized sensor boards, containing an ar-
rangement of 3-axis magnetic sensors (MAG3110, Freescale
Semiconductor, Austin, TX) and accompanying electronics
were affixed to the base. These digital sensors have a resolu-
tion of 0.10 µT within a range of ± 1000 µT and powered by
a highly accurate, low-noise noise DC power supply at 3.3V
(GS200, Yokogawa, Tokyo, Japan). The electrical schematic
for the magnetic sensor on the sensor board is shown in
Fig. 9. Three boards (9 and 18-sensor rectangular grid boards
and a 9-sensor GA board) were built according to the designs
obtained in the simulation experiments as shown in Fig. 10.

A high performance field programmable grid array
(FPGA) with a real-time controller (cRIO 9082, National
Instruments (NI), Austin, USA) was interfaced between the
sensor boards and the robot controller. The magnetic field
measurements were transmitted through I2C protocol and
acquired using a digital I/O module (NI9403, NI, Austin, TX)
installed on the real-time controller. Motion commands to the
robot controller were transmitted via an Ethernet connection.
Programming of the FPGA-powered controller and the at-
tached module was achieved with LabVIEW (NI, Austin,
TX) and the ImagingLab Robotics Library (ImagingLab
GmbH, Alzenau, Germany) provided the software protocol
to communicate with the robot arm controller directly from
LabVIEW.

A. Localization Performance Verification

The end-effector of the articulated arm was programmed
using the robot controller to follow a trajectory that is
similar to but not identical to the representative path of the
sensor board. Along the trajectory, the field measurements
acquired by the sensors were recorded and used to estimate
the position of the magnet and subsequently compared to
the actual position of the end-effector of the robotic arm. A
total of 15 data points were collected during the trajectory
and the absolute error of the positional estimates at each
sample point as a function of the z coordinate of the sample
point are shown in Fig. 11 demonstrating that the trajectory
goes to a Euclidean depth of 60 mm, well over that required
for ventriculostomy. The RMSE of the three boards are
consolidated in Table II.

The RMSE and spatial absolute error plots in Table II and
Fig. 11 fully support the trend observed in the simulations.
The localization performance of 9-sensor GA derived board
was comparable to the 18-sensor rectangular grid board
and appreciably outperformed the 9-sensor rectangular grid
board. Although the magnitude of the errors were higher
than those predicted by the simulations, the errors can be
attributed to the imperfect magnetic source, field modeling
errors, sensor non-linearity and background noise. These
were especially acute for locations that are further away,

Fig. 8. Experimental setup consisting a of 6-axis robot arm with N52
cylindrical magnet at the end-effector and a magnetic sensor board affixed
onto the worktable.

Fig. 9. MAG3110 electrical schematics.

Fig. 10. Experimental sensor boards. (a) Nine-sensor GA (b) Nine-sensor
rectangular (c) Eighteen-sensor rectangular

due to the reduced SNR. With proper sensor calibration and
improved field modeling, these errors can be reduced.

V. CONCLUSION

A scheme to determine the optimal spatial sensor con-
figuration of a permanent magnet localization system for
enhanced tracking performance is presented. This approach
uses Genetic Algorithms and encodes the sensor layout



TABLE II
EXPERIMENTAL LOCALIZATION COMPARISON

RMSE (mm)
Number of Sensors Rectangular pattern GA pattern

9 4.69 4.12
18 4.10 –

Fig. 11. Experimental error comparison at various z displacements along
the trajectory points.

as a gene so that an optimal sensor configuration can be
iteratively calculated through evolution of the gene pool. The
simulated and experimental performance of a sensing system
using a GA-derived configuration is superior to an optimized
grid layout often used in current systems. The results also
suggest that sensor layout design has a larger influence on
localization accuracy and is more efficient than the traditional
option of installing and employing additional sensors. In
this paper, optimal design has been investigated with planar
arrays of sensors for simplicity of validation. Nevertheless,
the method is extendable to accommodate systems with more
complex geometries and also in 3 dimensions. Next steps
include implementing the optimized sensor layout on a 3D
flexible support that is compliant which allows it to be fitted
directly onto the convex surfaces of the head.
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