







# Effect of Timing of Hip Extension Assistance with IMU-based Iterative Control during Loaded Walking with a Soft Exosuit

Ye Ding<sup>1,2</sup>, Fausto A. Panizzolo<sup>1,2</sup>, Ignacio Galiana<sup>1,2</sup>, Christopher Siviy<sup>1,2</sup>, Kenneth G. Holt<sup>3</sup>, Conor J. Walsh<sup>1,2,†</sup>

<sup>1</sup>John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA <sup>2</sup>Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA <sup>3</sup>Sargent College of Health and Rehabilitation Science, Boston University, USA

<sup>†</sup>Corresponding author. E-mail: walsh@seas.harvard.edu

# **MOTIVATION**

- **Walking variability** in joint kinematics and kinetics makes it harder for same effective external assistive force to provide metabolic benefits to all wearer.
- Understanding the **effects of different hip assistive profiles** is a fundamentalT step of designing assistive device that can provide higher metabolic benefits.
- Limited literature with studies **exploring the effects of timing and magnitude of assistance** on hip joint.

### **HYPOTHESIS**

- Proposed controller can adapt different kinematics and kinetics and provide consistent hip joint assistance.
- Onset timing and peak force timing can regulate the amount of positive mechanical power delivered to the hip joint which is related to metabolic cost of walking.

### **AIM**

- **Model soft exosuit** to determine how to appropriate apply the desired assistive force through a soft exosuit
- Design and validate the performance of IMU-based iterative control across different subjects.
- Investigate the effect of onset and peak timings between hip assistive profiles by means of a soft exosuit.

# **MODELING**

- Model soft exosuit to determine how to appropriate apply the desired assistive force through a soft exosuit.





### **CONTROLLER**

# **Timing detection**

- Detect the onset timing with maximum thigh flexion point from IMU



### Force tracking

- Generate position trajectory profile based on a step-by-step force feedback
- Tracking the onset timing, peak force timing and magnitude

# Peak Timing Peak Timing Magnitude Force Onset Timing

# **METHOD**

- Eight male healthy participants (age  $29.8 \pm 5.0$  yr., weight  $82.6 \pm 5.8$  kg, height  $1.79 \pm 0.05$  m, mean  $\pm$  SD)
- A baseline condition: 23 kg loaded walking on treadmill at 1.5 m/s Four conditions: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP).
- Measurements: metabolic cost, kinematic data, ground reaction force, electromyographic signal (EMG).



### **RESULT**

## Force tracking performance

 Peak timing: Target: 23%

Average: 22.7 ± 0.6%

- Peak magnitude: Target: 200N

Average: 198.2 ± 1.6N

## Different assistive force profiles:

- Onset timing (90%, 0%)
- Peak timing (13%, 17%)
- Peak force 200N



### Delivered positive mechanical power & metabolic reduction:

|                                                | ESEP  | ESLP                                 | LSEP          | LSLP      |
|------------------------------------------------|-------|--------------------------------------|---------------|-----------|
| Delivered positive power (W·kg <sup>-1</sup> ) | 0.198 | 0.219                                | 0.185         | 0.198     |
| letabolic reduction (%)                        | 5.7   | 8.5                                  | 6.3           | 7.1       |
| O INPO ESEP ESI P I SEP                        |       | Metabolic cost (W kg <sup>-1</sup> ) |               | * p<0.05  |
| UNPD ESEP ESLP LSEP                            | LSLP  | UI                                   | NPD ESEP ESLP | LSEP LSLP |

### **DISCUSSION & CONCLUSION**

- Demonstrated IMU-based iterative controller can deliver robust hip extension assistive profiles across subjects.
- Different assistive conditions provided insight on how to **manipulate** actuation timing to regulate positive mechanical power to augment human walking
- ESLP provided highest mechanical positive power and highest metabolic reduction, suggesting that starting the assistance at terminal swing with a later peak force may be the most beneficial strategy.

# **FUNDING ACKNOWLEDGMENT**





