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Abstract

Background: The anterior-posterior ground reaction force (AP-GRF) and propulsion and braking point metrics
derived from the AP-GRF time series are indicators of locomotor function across healthy and neurological diagnostic
groups. In this paper, we describe the use of a minimal set of wearable inertial measurement units (IMUs) to indirectly
measure the AP-GRFs generated during healthy and hemiparetic walking.

Methods: Ten healthy individuals and five individuals with chronic post-stroke hemiparesis completed a 6-minute
walk test over a walking track instrumented with six forceplates while wearing three IMUs securely attached to the
pelvis, thigh, and shank. Subject-specific models driven by IMU-measured thigh and shank angles and an estimate of
body acceleration provided by the pelvis IMU were used to generate indirect estimates of the AP-GRF time series.
Propulsion and braking point metrics (i.e., peaks, peak timings, and impulses) were extracted from the IMU-generated
time series. Peaks and impulses were expressed as % bodyweight (%bw) and peak timing was expressed as % stance
phase (%sp). A 75%-25% split of 6-minute walk test data was used to train and validate the models. Indirect estimates
of the AP-GRF time series and point metrics were compared to direct measurements made by the forceplates.

Results: Indirect measurements of the AP-GRF time series approximated the direct measurements made by
forceplates, with low error and high consistency in both the healthy (RMSE = 4.5%bw; R2 = 0.93) and post-stroke
(RMSE = 2.64%bw; R2 = 0.90) cohorts. In the healthy cohort, the average errors between indirect and direct
measurements of the peak propulsion magnitude, peak propulsion timing, and propulsion impulse point estimates
were 2.37%bw, 0.67%sp, and 0.43%bw. In the post-stroke cohort, the average errors for these point estimates were
1.07%bw, 1.27%sp, and 0.31%bw. Average errors for the braking estimates were higher, but comparable.

Conclusions: Accurate estimates of AP-GRF metrics can be generated using three strategically mounted IMUs and
subject-specific calibrations. This study advances the development of point-of-care diagnostic systems that can
catalyze the routine assessment and management of propulsion and braking locomotor deficits during rehabilitation.
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The neuromechanical processes underlying healthy
bipedal locomotion are multi-factorial [1–3] and converge
on locomotor patterns that are characteristically fast, effi-
cient, and stable [1, 4]. An impaired ability to transition
from step to step is a locomotor deficit common across
diagnostic groups [5–13]. During the step-to-step tran-
sition of each gait cycle, a braking force is generated by
the leading limb as it makes contact with the ground in
front of the body. To efficiently accelerate the body into
the next step, coordination of the timing and magnitude
of the forward propulsion force generated by the trail-
ing limb is required [1, 14–16]. Moreover, to walk faster,
healthy individuals symmetrically increase the magnitude
of propulsion generated by each limb while maintaining
the relative timing of the propulsion peak [15, 17, 18].
In individuals with impaired propulsion function, walk-
ing is often slow, metabolically expensive, and unstable
[19–22].
Laboratory equipment such as instrumented tread-

mills and forceplates are the gold standard in charac-
terizing propulsion and braking function during healthy
[23, 24] and impaired [5, 6, 9, 10, 20, 25–27] walk-
ing by way of direct measurements of the anterior-
posterior ground reaction forces (AP-GRFs) generated
during walking and point metrics extracted from the
AP-GRF time series (Fig. 1). For example, older adults
are reported to generate up to 22% less peak propul-
sion (i.e., the peak of the anterior ground reaction
force) compared to young adults [23, 24], and in peo-
ple post-stroke, the propulsion generated by the paretic
limb is up to 68% less than the non-paretic limb
[9, 20, 26, 27]. Studies that have combined AP-GRF
measurements with clinical evaluations have shown the
clinical consequences of impaired propulsion function.
Indeed, asymmetry in the propulsion impulses generated
by the paretic and non-paretic limbs is correlated with
hemiparetic severity [9, 28]. Moreover, deficits in propul-
sion function are highly related to walking speed [29] and
long distance walking [30] after stroke—key determinants
of community participation and perceived quality of life
[19, 31, 32].
Despite the importance of propulsion to a func-

tional bipedal gait, conventional rehabilitation efforts
have, by and large, been unable to restore propulsion
function after neurological injury or dysfunction. The
development and study of interventions that target
propulsion function is a highly active area of research
[12, 33–41]; however, the clinical translation of these
experimental approaches is hindered by the limited
access that rehabilitation clinicians have to the sophis-
ticated instrumentation (i.e., forceplates and instru-
mented treadmills) and personnel with advanced train-
ing required to collect, analyze, and interpret ground

reaction force data. Moreover, even in settings with
access to a motion analysis laboratory, locomotor dif-
ferences inherent to treadmill walking and the small
collection footprint of most overground forceplate walk-
ways limit ecological validity. Together, these limita-
tions of the current state-of-the-art motivate the devel-
opment of point-of-care propulsion diagnostic sys-
tems. The clinical management of locomotor propul-
sion deficits will remain untenable if the measure-
ment instruments used to assess limb propulsion remain
inaccessible.
Wearable sensors are a promising solution for this

measurement gap. Indeed, wearable sensors have been
used to extend gait measurements outside of the labora-
tory [42–47] and a wide range of methods and sensors
have proven effective in providing indirect measurements
of the ground reaction forces generated during walking
[48–51]. These methods, however, have largely not been
effective for the AP-GRFs and depend on assumptions of
healthy, consistent walking patterns that may not trans-
late to impaired locomotor patterns [51, 52]. Recent work
has shown that inertial measurement units (IMUs) can
be used to make measurements during healthy [44] and
hemiparetic walking [53] that are highly correlated to key
features of propulsion. The aims of this study were to
extend this work by describing the use of a minimal set of
IMUs to indirectly measure the AP-GRF generated during
healthy and hemiparetic walking and provide estimates of:
(i) the AP-GRF time series and (ii) salient propulsion and
braking pointmetrics (i.e., peakmagnitudes, peak timings,
and impulses) extracted from the time series (see Fig. 1).

Methods
Participants
Ten healthy individuals (26 ± 4 years, 171 ± 10.8 cm,
68 ± 17 kg) (Table 1, top) who were free of conditions
that impaired walking ability (as per self-report and con-
firmation during the study visit) and five individuals with
chronic post-stroke hemiparesis (58 ± 15 years, 180 ± 2.9
cm, 91 ± 12 kg) (Table 1, bottom) were recruited to par-
ticipate in this study. The inclusion criteria for study par-
ticipants who were post-stroke consisted of being greater
than six months post-stroke, having the ability to walk
without the assistance of another individual, and pre-
senting with observable gait deficits. Exclusion criteria
included comorbidities other than stroke that impaired
walking ability, resting heart rate outside the range of 40
to 100 beats per minute, resting blood pressure outside
the range of 90/60 to 170/90 mmHg, inability to com-
municate with investigators, and pain in the lower limbs
or spine. Individuals post-stroke were recruited from a
research participant registry generated from the clinical
programs at Boston University, referrals from local clinics
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Fig. 1 Anterior-posterior ground reaction force (AP-GRF) time series and salient propulsion and braking metrics

and hospitals, and flyers distributed in and around Boston.
All study procedures were approved by the Boston Uni-
versity Institutional Review Board and written informed
consent was secured from all study participants.

Gait evaluation and data collection overview
Study participants completed a testing session that
included a standing static trial, 10-meter walk test at a

comfortable walking speed (CWS), and a 6-minute walk
test with the instruction to cover as much distance as
safely possible [54]. The standing static trial served as a
reference for the orientation of the IMUs, the 10-meter
walk test was used to measure usual walking speed and
paretic propulsion symmetry (as described in [9]) to char-
acterize study participants’ baseline walking function (see
Table 1), and the 6-minute walk test provided the model

Table 1 Study participant characteristics

Participant number Side of Paresis Stroke onset (y) Sex Age (y) Height (cm) Weight (kg) CWS (m/s) Pp (%)

Healthy study participants

H01 - - F 33 155 54.0 1.10 -

H02 - - F 25 164 46.9 1.29 -

H03 - - F 24 174 64.6 1.64 -

H04 - - M 29 179 63.9 1.19 -

H05 - - F 23 154 55.6 1.55 -

H06 - - F 25 162 64.4 1.36 -

H07 - - M 21 179 57.6 1.25 -

H08 - - M 27 179 101.2 1.22 -

H09 - - M 30 177 91.2 1.23 -

H10 - - M 25 183 78.0 1.42 -

Average±SD - - - 26±4 171±11 68±17 1.33±0.17 -

Study participants with post-stroke hemiparesis

S01 Left 8.08 M 61 180 72.6 0.97 18

S02 Right 5.92 M 35 184 93.0 1.47 31

S03 Left 7.92 M 78 181 100.8 1.00 32

S04 Right 7.25 M 56 180 88.0 0.80 24

S05 Left 6.08 M 62 176 99.8 1.27 52

Average±SD - 7.1±1.0 - 58±15 180±2.9 91±12 1.10±0.27 31±13

Abbreviations: CWS - comfortable walking speed, Pp - propulsion symmetry (see [9])
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training and validation datasets. All walking tests were
performed around a 26.6m oval indoor track consisting of
two 10m straightaways separated by 3.3m turns on either
end. One of the 10m straightaways was instrumented with
six forceplates (Bertec, Columbus, OH, USA) located level
with the surrounding floor (Fig. 2a) to enable the collec-
tion of ground reaction forces (i.e., the reference standard)
during the 6-minute walk test.
Prior to testing, wireless inertial measurement units

(IMUs, MTw Awinda, Xsens, Enschede, Netherlands)
were securely attached to the posterior pelvis and later-
ally on the thigh and shank using fabric wraps (Fig. 2a).
These three IMUs served as the primary sensor set eval-
uated in this study, with each IMU selected based on a
biomechanics-based model of the propulsion and braking
forces generated during walking. More specifically, when
considered together, the shank and thigh sagittal angles
measured by the IMUs attached to these segments provide
information on the limb’s position relative to the body [44]
and the acceleration measured by the pelvis IMU serves
as a proxy for the body acceleration. Both the limb’s posi-
tion relative to the body and the body’s acceleration during
walking are highly correlated with propulsion and braking
during walking [55–57]. Each IMUwasmounted such that
one axis moves along the sagittal plane. Specifically, the
pelvis IMUwas placed below the fifth lumbar vertebrae on
the sacrum and the thigh and shank IMUs were placed lat-
erally, a third of the corresponding segment length away

from the knee and ankle joints respectively. For the pur-
poses of this study, two additional IMUs were attached
to the contralateral thigh and shank to enable indirect
measurement of each limb’s AP-GRF concurrently. The
calibration routines and algorithm were implemented in
the same way for both the healthy and post-stroke sub-
groups, with indirect measurement of each limb’s AP-GRF
estimated usingmeasurements of global acceleration from
the pelvis IMU and segment angles from the respective
limb’s thigh and shank segment IMUs. That is, using this
approach, only three IMUs (i.e., pelvis, shank, and thigh)
are necessary for AP-GRF estimates for one limb, whereas
five IMUs (1 pelvis, 2x shank, and 2x thigh) are necessary
for AP-GRF estimates from both limbs.
The IMU measurements of pelvis global acceleration

and thigh and shank angles (Fig. 2b) were used to gener-
ate subject-specific estimates of the AP-GRF time series
(Fig. 2c), from which key metrics were extracted (see
“Analyses” section). Both IMU and forceplate signals were
temporally synchronized using a synchronization pulse
triggered at the start of data collection in both data col-
lection systems [58]. Whereas our IMU approach pro-
vided indirect measurements of the AP-GRF for all strides
(Fig. 2c), only strides with full direct measurement of the
individual limb AP-GRF by the forceplates (i.e., no par-
tial strikes) were used for comparative analyses. Because
the six forceplates were located within the middle 4m of
one of the 10m straightaways of the walking track, steps

Fig. 2 a IMU setup on a participant and walking track with forceplates mounted level with the surrounding floor. b IMU-measured pelvis
acceleration and shank and thigh angles were used in combination with subject-specific estimation algorithms to generate indirect measurements
of the anterior-posterior ground reaction force (AP-GRF). Moreover, the shank angle was used to identify the stance phase, defined as the period
between heel strike and toe off of the target limb. c IMU-based AP-GRF (indirect) and forceplate measured AP-GRF (direct). Direct AP-GRF
measurements were limited to forceplate strikes, thus one stride
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taken during turns were not included in these analyses.
For eight of the healthy study participants, data from the
right limb are reported. For the remaining two healthy
study participants, physical drift of one of the IMUs on the
body during the experiment (due to an insecure attach-
ment) made the right limb data unusable. Thus, for these
two individuals, data from the left limb are reported. For
the post-stroke participants, data from both the paretic
and non-paretic limbs are reported. The model training
datasets consisted of an average 14± 3 strides per healthy
participant and 9 ± 4 strides per post-stroke participant
(Supplementary Table 1).

Data processing
IMU data were collected at 100Hz, with acceleration data
filtered at 10Hz using a second order Butterworth filter.
Forceplate data were collected at 2000Hz, filtered at 10
Hz using a second order Butterworth filter, and down
sampled to match the IMU collection frequency. All gait
data were segmented between initial contact and toe-off
and time-normalized to 100 points to represent the stance
phase of walking.When forceplate data were available, ini-
tial contact and toe-off events were defined using the ver-
tical ground reaction force using a 30 N threshold. When
forceplate data were not available, the maximum andmin-
imum peaks in the IMU-measured shank angle were used,
with initial contact defined by the maximum peak and
toe-off defined by the minimum peak [43] (Fig. 2b).
Before modeling, the forceplate data were normalized

to the body weight of the subject. The IMU orienta-
tions during the static standing trial served as the zero
reference for the IMU orientation signals during walking
[59, 60]. To compute the segment Euler angles, the quater-
nion vector relative to the static standing reference was
found and subsequently rotated such that the roll axis of
the IMU was aligned with the sagittal rotation axis of the
segment [61–63]. The thigh and shank angles were off-
set to start at zero degrees at each periodic heel strike
to address any drift over time [59, 64]. We also bounded
the thigh and shank angles to a sine function, as is com-
mon with inverse kinematics equations [65]. Together,
the filtered pelvis acceleration signal and the sine of the
thigh and shank angles form the basis for the modeling
approach described.

Analyses
We analyzed the IMU data with two main goals. The first
goal was to identify the IMU sensor set that provides the
most accurate and reliable model-informed indirect mea-
surement of the anterior-posterior ground reaction force
(AP-GRF) time series. The second goal was to use this
indirect measurement of the AP-GRF time series to esti-
mate salient point metrics—i.e., the peaks, peak timings,
and impulses of the anterior (propulsion) and posterior

(braking) ground reaction force (see Fig. 1). A 75%-25%
data split was used for model training and validation,
respectively.

Indirect measurement of the anterior-posterior ground
reaction force time series
Indirect measurements of the AP-GRF time series Fa−p,est
were made by generating a subject-specific linear regres-
sion model using the IMU measurements of pelvis accel-
eration apelvis, the sine of the thigh angle in the sagittal
plane sin(θthigh), the sine of the shank angle in the sagittal
plane sin(θshank), and the interactions sin(θshank) × apelvis,
sin(θthigh) × apelvis, and sin(θthigh) × sin(θshank). Thus, we
describe Fa−p,est as

Fa−p,est = c · x (1)

where c is a vector [ c1...c7] of subject-specific regression
coefficients generated from the training dataset and x is a
vector [ apelvis, sin(θthigh), sin(θshank), sin(θshank) × apelvis,
sin(θthigh) × apelvis, sin(θthigh) × sin(θshank)] of IMU mea-
sured components. To evaluate the relative importance
of each IMU, we recomputed Fa−p,est without each of
the pelvis, thigh, and shank IMUs—i.e., by setting their
respective components in Eq. 1 to zero. The overall fit
(R2) and the root mean square error (RMSE) when com-
paring Fa−p,est from each model to the AP-GRF time
series directly measured by the forceplates (i.e., Fa−p,act) is
presented in Fig. 3.

Indirect measurement of propulsion and braking point
metrics
Estimates of the propulsion and braking peak magnitudes
were defined initially as the maximum and minimum val-
ues of the Fa−p,est time series. If more than one peak was
observed, the second peak was used. To improve the accu-
racy of these point estimates, we introduced an additional
subject-specific model that leveraged highly consistent
estimates of the peak propulsion and braking timings,
which were recorded as a function of the stance phase
(%sp) and described as Fpk−tim,est . More specifically, the
values of apelvis, sin(θthigh), and sin(θshank) at Fpk−tim,est
were identified from the Fa−p,est time series and used to
create a new vector y =[ 1, apelvis_pk−tim, sin(θthigh_pk−tim),
sin(θshank_pk−tim)], which was, in turn, used to describe
Fpk−mag,est as

Fpk−mag,est = d · y (2)

where d is a vector [d1... d4] consisting of
updated regression coefficients. The interaction
terms sin(θshank) × apelvis, sin(θthigh) × apelvis, and
sin(θthigh) × sin(θshank) were not included in Eq. 2 as they
did not improve the model’s performance.
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Fig. 3 Comparison of direct (i.e., forceplate-measured) and indirect (i.e., IMU-based) measurements of the anterior-posterior ground reaction force
(AP-GRF). a The AP-GRF time series reconstruction enabled by the primary sensor set (i.e., pelvis, thigh, and shank IMUs) and with each of these IMUs
removed is shown for exemplar participants from the healthy and post-stroke cohorts. b Root mean square error (RMSE) and consistency (R2)
metrics for each sensor set are shown for each study subject

In preliminary work, we found that Fpk−tim,est consis-
tently overestimated or underestimated the actual force-
plate measured peak timings and was thus revised as
Fpk−tim,revised and described as

Frevised = e1 + e2 · Fest (3)

The final point metrics of interest were the propulsion
and braking impulses (Fimp,est). These were computed by
summing all of the positive (i.e., for propulsion) and neg-
ative (i.e., for braking) values in each Fa−p,est cycle and
dividing by the total number of points (i.e., 100) to yield
the propulsion and braking impulses (%bw) per stride.
Similar to the peak propulsion and braking timings, we
found that Fimp,est consistently overestimated or underes-
timated the actual propulsion and braking impulses and
was thus revised using Eq. 3.

Statistical analysis
All analyses were performed using custom MATLAB
scripts (MATLAB, MathWorks, Natick, MA, USA). The
regression model was fit using the fitlm() function in

MATLAB, with R2 and root mean square error (RMSE)
exported directly as a function output. Together, R2 and
RMSE show the consistency and accuracy between the
Fa−p,act and Fa−p,est time series.
For the point metrics of interest, in addition to comput-

ing the RMSE, the degree of absolute agreement among
direct and indirect measurements was evaluated using
two-way mixed effect, absolute agreement, single rater
intraclass correlation coefficients (ICCs) [66, 68], with an
alpha value of 0.05. ICC values were interpreted using the
guidelines provided in [66] with an ICC above 0.90 con-
sidered to be excellent, 0.90 to 0.75 as good, 0.75 to 0.50 as
moderate, and less than 0.50 as poor.
RMSEs and ICCs between direct and indirect mea-

surements were computed for the training and validation
datasets across all strides available from the healthy and
post-stroke cohorts. Datapoints were identified as outliers
if they were greater than three standard deviations from
the mean. If an outlier was identified, the analysis was
re-run with the datapoint removed. The results with and
without the outlier are reported, and the outlier is shown
in the plots.
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Results
Measurement of the AP-GRF time series
The indirect measurement of the AP-GRF time series
(Fa−p,est) strongly approximated the direct measurement
of the time series made by the reference standard force-
plates (Fa−p,act) in both the healthy (R2= 0.93, RMSE =
4.62%bw) and post-stroke (R2= 0.90, RMSE = 2.64%bw)
cohorts. To assess the importance of each IMU used
in the equation (Eq. 1), we recomputed R2 and RMSE
with the removal of each IMU’s parameters (Fig. 3,
Supplementary Table 1).
Removal of the thigh IMU parameters from Eq. 1

resulted in a substantial weakening of the AP-GRF recon-
struction in both the healthy (�R2 = -0.40, % increase in
RMSE = 155%) and post-stroke (�R2 = -0.34, % increase in
RMSE = 125%) cohorts. Without the shank IMU parame-
ters, the AP-GRF reconstruction was similarly weakened,
but to a lesser degree, in both the healthy (�R2 = -0.13, %

increase in RMSE = 66%) and post-stroke (�R2 = -0.13, %
increase in RMSE = 55%) cohorts. Removal of the pelvis
IMU parameters similarly weakened the AP-GRF recon-
struction in both the healthy (�R2 = -0.06, % increase in
RMSE = 31%) and post-stroke (�R2 = -0.07, % increase
in RMSE = 33%) cohorts. Each IMU’s importance to the
AP-GRF reconstruction varied across study participants
(Fig. 3b, Supplementary Table 1).

Measurement of AP-GRF point metrics
Peak propulsionmagnitude
In the training dataset, the magnitude of the propulsion
peaks in the Fa−p,est time series strongly approximated
the Fa−p,act time series in the healthy cohort (RMSE =
1.39%bw, ICC = 0.96) and for both the paretic (RMSE =
0.68%bw, ICC = 0.99) and non-paretic (RMSE = 0.97%bw,
ICC = 0.99) limbs of the post-stroke cohort (Fig. 4a, train-
ing). In the validation dataset, the estimated propulsion

Fig. 4 Accuracy of propulsion point metrics. Comparison of direct (i.e., forceplate) and indirect (i.e., IMU) measurements of the a peak propulsion
magnitude, b peak propulsion timing, and c propulsion impulse. RMSE and ICC means are reported for each training and validation analysis. A single
statistical outlier—identified with a red outline—was identified for the post-stroke peak propulsion validation analysis. The findings with and
without the outlier are presented, respectively, in parentheses and with an *. Note: high homogeneity in (b, Left), with multiple points overlaid. See
Supplementary Table 2 for ICC 95% confidence interval
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peak magnitudes remained a strong approximation of the
forceplate-measured propulsion peak magnitudes for the
healthy cohort (RMSE = 2.37%bw, ICC = 0.87) and for the
paretic (RMSE = 1.07%bw, ICC = 0.98) and non-paretic
(RMSE = 1.10%bw, ICC = 0.99) limbs of the post-stroke
cohort (Fig. 4a, validation).

Peak propulsion timing
In the healthy cohort, the propulsion peak timings in
the Fa−p,est time series strongly approximated the Fa−p,act
time series for both the training (RMSE = 0.63%sp) and
validation (RMSE = 0.67%sp) datasets (Fig. 4b). In the
post-stroke cohort, similarly strong approximations were
observed for both the paretic and non-paretic limb mea-
surements in the training (paretic RMSE = 1.03%sp, non-
paretic RMSE = 0.70%sp) and validation (paretic RMSE
= 1.27%sp, non-paretic RMSE = 0.71%sp) datasets. High
reliability was observed in the post-stroke training and
validation datasets (ICCs >0.97); however, in the healthy
datasets, highly homogeneous propulsion peak timings
(i.e., between 84 to 89%sp) contributed to low reliability
(ICCs <0.57), despite high agreement (see [66, 67]).

Propulsion impulse
In the training dataset, the propulsion impulses in the
Fa−p,est time series strongly approximated those of the
Fa−p,act time series in the healthy cohort (RMSE =
0.39%bw, ICC = 0.89) and for both the paretic (RMSE =
0.26%bw, ICC = 0.98) and non-paretic (RMSE = 0.31%bw,
ICC = 0.99) limbs of the post-stroke cohort (Fig. 4c,
training). In the validation dataset, the estimated propul-
sion impulses remained a strong approximation of the
forceplate-measured propulsion impulses for the healthy
cohort (RMSE = 0.43%bw, ICC = 0.86) and for the paretic
(RMSE = 0.31%bw, ICC = 0.98) and non-paretic (RMSE
= 0.33%bw, ICC = 0.98) limbs of the post-stroke cohort
(Fig. 4c, validation).

Peak brakingmagnitude
In the training dataset, the magnitude of the braking
peaks in the Fa−p,est time series strongly approximated
the Fa−p,act time series in the healthy cohort (RMSE =
1.81%bw, ICC = 0.94) and for both the paretic (RMSE =
1.52%bw, ICC = 0.99) and non-paretic (RMSE = 1.09%bw,
ICC = 0.95) limbs of the post-stroke cohort (Fig. 5a,
training). In the validation dataset, the estimated brak-
ing peak magnitudes remained a strong approximation of
the forceplate-measured braking peak magnitudes for the
healthy cohort (RMSE = 2.72%bw, ICC = 0.88) and for the
paretic (RMSE = 2.46%bw, ICC = 0.97) limbs of the post-
stroke cohort (Fig. 5a, validation). The estimated braking
peak magnitudes for the non-paretic limbs of the post-
stroke cohort had a moderate approximation (RMSE =
2.98%bw, ICC = 0.64).

Peak braking timing
In the healthy cohort, the braking peak timings in the
Fa−p,est time series strongly approximated the Fa−p,act
time series for both the training (RMSE = 0.76%sp)
and validation (RMSE = 1.37%sp) datasets (Fig. 5b). In
the post-stroke cohort, similarly strong approximations
were observed for both the paretic and non-paretic limb
measurements made in the training (paretic RMSE =
0.73%sp, non-paretic RMSE = 0.78%sp) and validation
(paretic RMSE = 1.21%sp, non-paretic RMSE = 1.52%sp)
datasets. High reliability was observed in the post-stroke
training and validation datasets (ICCs >0.96); however,
in the healthy datasets, high homogeneity in the brak-
ing peak timings (i.e., between 16 to 22%sp) contributed
to lower reliability (ICCs < 0.76), despite high agreement
(see [66, 67]).

Braking impulse
In the training dataset, the braking impulses in the
Fa−p,est time series strongly approximated those of the
Fa−p,act time series in the healthy cohort (RMSE =
0.52%bw, ICC = 0.80) and for both the paretic (RMSE =
0.47%bw, ICC = 0.95) and non-paretic (RMSE = 0.40%bw,
ICC = 0.95) limbs of the post-stroke cohort (Fig. 5c,
training). In the validation dataset, the estimated brak-
ing impulses remained a strong approximation of the
forceplate-measured braking impulses for the healthy
cohort (RMSE = 0.68%bw, ICC = 0.66) and for the paretic
(RMSE = 0.56%bw, ICC = 0.93) and non-paretic (RMSE
= 0.55%bw, ICC = 0.90) limbs of the post-stroke cohort
(Fig. 5c, validation).

Discussion
Laboratory-based instrumented treadmills and force-
plates are the gold standard in the direct measurement of
the AP-GRF generated during walking [65]. We present
the use of a minimal set of wearable inertial sensors
to provide, with a high level of accuracy and robust-
ness, indirect measurements of the AP-GRF time series
and salient propulsion and braking point metrics. This
work advances the development of point-of-caremeasure-
ment systems that can catalyze the routine assessment
and management of propulsion and braking locomotor
deficits. Indeed, the approach presented in this paper has
near-term potential to overcome logistical hinderances to
including overground AP-GRF assessments in laboratory-
based movement research and has long-term potential
to extend the measurement capabilities of instrumented
treadmills and forceplates to clinical and real-world
settings.
Despite reduced ecological validity, instrumented tread-

mills are often utilized instead of overground force-
plates in laboratory-basedmovement research [41, 69–73].
Indeed, instrumented treadmills facilitate the collection of
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Fig. 5 Accuracy of braking point metrics. Comparison of direct (i.e., forceplate) and indirect (i.e., IMU) measurements of the a peak braking
magnitude, b peak braking timing, and c braking impulse. RMSE and ICC means are reported for each training and validation analysis. Note: high
homogeneity in (b, Left), with multiple points overlaid. See Supplementary Table 2 for ICC 95% confidence interval

a large number of consecutive samples with ease, whereas
forceplate walkways have traditionally been limited to
a small collection footprint of only several meters and
require multiple trials to collect a small number of sam-
ples [65, 69]. Our sensor-based approach has the potential
to extend the confined and limited length of forceplate
walkways by providing indirect AP-GRF measurements
for steps where a forceplate is not available, to replace par-
tial forceplate strikes that are not usable, and to minimize
threats to the validity of AP-GRF measurements that may
arise when test subjects target the forceplates while walk-
ing (i.e., by only including steps without a forceplate in the
analyses).

Toward a minimal sensor set for AP-GRF time series
measurements
When compared to forceplate measurements, three
IMUs strategically mounted to the pelvis, thigh, and
shank were effective in producing highly accurate indi-
rect measurements of the AP-GRF generated during

overground walking by both healthy and post-stroke indi-
viduals (Fig. 3). The selection of this sensor set was based
on a biomechanical framework linking the AP-GRF gen-
erated during walking with certain kinematic features that
are readily measured by IMUs. That is, the angles mea-
sured by the thigh and shank IMUs were used as a proxy
for the orientation of the limb relative to the body and
the acceleration measured by the pelvis IMU was used as
proxy for the body’s center of mass acceleration. These
variables are highly related to propulsion and braking
function [44, 55–57] and our findings demonstrate the
efficacy of this approach for reconstructing the AP-GRF
time series.
We found that all three IMUs were required to produce

the best estimates of the AP-GRF time series. Remov-
ing even one IMU had a substantial impact on estimation
accuracy. Removal of the thigh IMU resulted in the great-
est change across subjects: a 155% increase in the root
mean square error and a 40% reduction in the model
strength (R2) for healthy study participants, with a similar



Arumukhom Revi et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:82 Page 10 of 13

effect in the post-stroke cohort. Removing the pelvis or
shank IMUs resulted in overall less reductions in accu-
racy; however, the effects varied across individual subjects
(Fig. 3), indicating that including all three IMUs was most
advantageous.
In recent work, a model-based approach to estimating

the AP-GRF time series and other kinematic and kinetic
variables during healthy walking used a 17-IMU sen-
sor set to produce AP-GRF estimates with a root mean
square error of 5.5%bw [48]. Our approach with only
three IMUs resulted in lower error in healthy study par-
ticipants (i.e., 4.6%bw) and was also shown to be highly
effective for post-stroke hemiparetic gait, with error of
2.64%bw. Taken together with the availability and low
cost of IMUs, these findings motivate future applications
in both laboratory-based movement research and clini-
cal practice—i.e., to complement and extend overground
forceplate data collections in a research lab setting by
providing indirect estimates of the AP-GRF time series
every step, and providing clinicians with the access to
these measurements that they need to inform locomotor
diagnoses and treatments.

Accuracy of AP-GRF point metric measurements
Point metrics are often extracted from the AP-GRF time
series to characterize deficits in locomotor function [55,
74, 75]. The minimal detectable change (MDC) for many
of these point metrics has been computed for hemiparetic
walking overground [75]. Comparing the magnitude of
error in our estimates to the available overground MDCs
is another approach to evaluate measurement accuracy.
For the peak paretic propulsion estimates, the root mean
square error of 1.07%bw that we observed was lower than
the 1.80%bw MDC previously reported [75]. Similarly, for
the propulsion impulse estimates, the root mean square
error of 0.31%bw for the paretic propulsion impulse
was lower than the 0.90%bw MDC previously reported
[75]. For the non-paretic limb, the propulsion peak and
impulse point estimates had similar error magnitudes as
the paretic limb, but MDC references were not available
for comparison. The paretic limb’s braking point met-
rics were observed to have slightly higher error than the
propulsion point metrics; however, MDC references were
also not available for comparison. Ultimately, the accuracy
of our approach is highlighted by the excellent agreement
(ICCs >0.90) between IMU and forceplate measurements
for most of the point metrics of interest.
In addition to the peak and impulse point metrics, we

were also interested in the accuracy of the timing of the
propulsion and braking peaks. Across subjects, the root
mean square error in the timing of the propulsion and
braking peaks was less than 1.4%sp. Despite this low error,
the ICC values for the propulsion and braking peak tim-
ings were poor to moderate in the healthy cohort (ICCs

ranged from 0.33 to 0.57), whereas they were good to
excellent in the post-stroke cohort (ICCs ranged from 0.79
to 0.97). The low ICCs for the peak timings observed in
the healthy cohort is likely the result of reduced vari-
ability in the dataset [66, 67]. In the healthy cohort,
peak propulsion timings ranged between 84 and 89%sp
and peak braking timings ranged between 16 and 22%sp,
whereas substantially more variability was observed for
both point metrics in the post-stroke cohort (Figs. 4 and
5b, Supplementary Table 1).

Future considerations
An advantage of modeling the AP-GRF using a
biomechanics-based equation is the potential to identify
the relative contribution of each term, and how this rel-
ative contribution may change over time or as the result
of intervention. Each of the terms included in the model
reflects biomechanical processes related to the generation
of the AP-GRF (i.e., segment/limb orientations and body
acceleration) and examining changes in the relative con-
tribution of each term—e.g., changes in standardized
coefficients—would presumably reflect changes in these
biomechanical processes. In contrast,model-free approaches
centered on machine learning may provide more accu-
rate estimates of the AP-GRF, but do not easily allow
for examination of underlying biomechanical processes
[49, 52]. Hybrid approaches that combine model and
model-free terms are worth investigating. Furthermore,
the extension of this work to other diagnostic groups w
ith neuromotor impairments that alter the generation of
anterior-posterior ground reaction forces (e.g., Multiple
Sclerosis [5], Parkinson’s disease [25, 76], spinal cord
injury [10], traumatic brain injury [11, 12]) would advance
targeted rehabilitation approaches for these populations.

Limitations
There are inherent limitations to using IMU technology
for human movement analysis. For example, in addition
to drift in the component signals that must be accounted
for, IMUs need to be securely mounted to the body seg-
ments to avoid physical drift or movement of the sensor
relative to the body segment and minimize soft tissue
artifacts. As described in the “Methods” section, data
from the right limbs of two healthy individuals were not
usable due to an insecure attachment of the sensor to the
segment. Relatedly, a current requirement of our IMU-
based approach is mounting the lower limb IMUs such
that one of the IMU planes correspond with the sagit-
tal plane of the segment. Failure to do so would result in
erroneous measurements of the sagittal plane angles used
in the equations. Future efforts that leverage techniques
such as coordinate rotations [60, 62, 63, 77] may enable
extension of this approach. Fundamentally, our approach
depends on body and limb kinematics to produce a kinetic
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measurement. Thus, patient subsets and walking con-
ditions characterized by higher locomotor variability or
AP-GRFs outside of the range observed in this study (e.g.,
acute post-stoke patients) may not be suitable for this
approach in its current form.

Conclusions
We show that indirect measurements of the anterior-
posterior ground reaction forces generated during healthy
and post-stroke walking can be made using three
strategically-mounted inertial sensors in combination
with subject-specific calibrations. This work has near-term
potential to overcome logistical hinderances to including
overground anterior-posterior ground reaction force
assessments during laboratory-basedmovement research,
and has long-term potential to catalyze the routine assess-
ment and management of propulsion and braking deficits
during locomotor rehabilitation. This foundational study
is a step towards a fully wearable and autonomous point-
of-care measurement system that can extend the mea-
surement capabilities of laboratory-based instrumented
treadmills and forceplates to ecological settings.
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