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Abstract— Soft strain sensors have been explored as an 

unobtrusive approach for wearable motion tracking. However, 

accurate tracking of multi degree-of-freedom (DOF) noncyclic 

joint movements remains a challenge. This paper presents a soft 

sensing shirt for tracking shoulder kinematics of both cyclic and 

random arm movements in 3 DOFs: adduction/abduction, 

horizontal flexion/extension, and internal/external rotation. The 

sensing shirt consists of 8 textile-based capacitive strain sensors 

sewn around the shoulder joint that communicate to a 

customized readout electronics board through sewn 

micro-coaxial cables. An optimized sensor design includes 

passive shielding and demonstrates high linearity and low 

hysteresis, making it suitable for wearable motion tracking. In a 

study with a single human subject, we evaluated the tracking 

capability of the integrated shirt in comparison with a ground 

truth optical motion capture system. An ensemble-based 

regression algorithm was implemented in post-processing to 

estimate joint angles and angular velocities from the strain 

sensor data. Results demonstrated root mean square errors 

(RMSEs) less than 4.5 for joint angle estimation and 

normalized root mean square errors (NRMSEs) less than 4% 

for joint velocity estimation. Furthermore, we applied a 

recursive feature elimination (RFE)-based sensor selection 

analysis to down select the number of sensors for future shirt 

designs. This sensor selection analysis found that 5 sensors out 

of 8 were sufficient to generate comparable accuracies. 

I. INTRODUCTION 

Human motion tracking is desirable for many applications 
such as animation, sports, rehabilitation, and biomechanics 
study. It focuses on estimating positions and orientations of 
various body segments. With the recent wearable sensor 
development, motion tracking in non-lab-constrained 
environments becomes possible and opens up many 
applications. In the field of wearable robotics, continuous 
tracking of joint angles and velocities enables robotic assistive 
devices to autonomously operate in sync with the user’s 
motion or intention [1], [2].  

To achieve motion tracking, various approaches have been 
proposed including optical motion capture systems, 
inertial-measurement units (IMUs), and soft strain sensors. 
Optical motion capture has been considered the gold standard 
because of its high accuracy, but it is generally expensive and 
constrained to lab environments. IMU systems have overcame 
this space limitation but have often suffered from integration 
drift, especially in the plane perpendicular to gravity. To 
reduce drift, many sensor fusion schemes involving multiple 
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types of sensors have been proposed [3], [4]. Most of the 
proposed methods rely on magnetometers [5], [6], whose 
signals are susceptible to environmental ferromagnetic 
materials [7]. In dealing with the magnetic disturbances, 
existing approaches involve limiting the contribution of the 
magnetometer measurement [8] or actively updating magnetic 
field directions [9], [10]. In an effort to achieve unobtrusive 
wearable systems with minimal signal conditioning, soft strain 
sensors that are highly stretchable and compliant have been 
explored as an alternative wearable motion tracking approach. 
A soft strain sensing approach tracks human kinematics by 
measuring the skin or textile deformation due to body motion 
and then mapping this information to the inducing body 
movement. 

Previous work in using soft strain sensors for motion 
tracking have mostly focused on detecting single 
degree-of-freedom (DOF) joint motions. For example, 
existing lower extremity sensing suits tracked motions of hips, 
knees, and ankles in the sagittal plane for gait detection 
[11]-[13] or kinematics analysis [14], [15]. Additionally, soft 
strain sensors were attached over finger joints [16]-[18] or the 
elbow joint [19] to measure degrees of flexion and extension. 
For tracking a single DOF, a single sensor with linear 
regression is often sufficient to accurately represent the 
signal-to-motion relationship. To track a joint with multiple 
DOFs, multiple sensors with more sophisticated algorithms 
are needed. In [20], two piezoresistive soft sensors and a 
geometry-based calibration method were used to detect 
two-DOF shoulder motions. Comparing to an optical motion 
capture system, this study achieved root mean square errors 

(RMSEs) less than 10 for rhythmic shoulder flexion and 
shoulder abduction. In other work, [21] demonstrated 
simultaneous tracking of multiple joints including shoulders, 
elbows, hip, and knees. Through the use of 20 microfluidic 
soft sensors and a deep learning algorithm, a full body 3-D 
skeleton was reconstructed with the overall estimation RMSE 
of 29.5 mm for three repetitive motions: squat, bend and reach, 
and windmill.  

Despite exciting proof of concept demonstrations, there 
remain limitations to enable multi-DOF tracking with soft 
strain sensors to become practical enough for real-world 
applications. Sensor nonlinearity and hysteresis have made it 
challenging to accurately estimate body motion, especially in 
the multi-sensor configuration. It was recently proposed to 
calibrate these sensor characteristics using deep learning [22], 
[23]. Through the use of recurrent neural networks, temporal 
sequences of past sensor signals were recorded to calibrate the 
sensor’s nonlinearity and hysteresis.  Such temporal sequence 
modeling learnt the sensor signal’s history dependency and 
enabled tracking of rhythmic body movements [13], [21]. 
However, accurate tracking of non-cyclic multi-DOF joint 
movements has yet to be demonstrated. Moreover, most 
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multi-DOF tracking studies have omitted tracking joint 
internal/external rotation. This is because the skin or textile 
deformation induced by movements in different DOFs is often 
coupled and only the net result can be measured. Since 
internal/external rotation introduces a smaller amount of 
deformation, it is more challenging to decouple and track such 
joint rotation compared to other DOFs. To overcome this 
challenge, a large number of high-resolution sensors around 
the multi-DOF joint with a data-driven rotation estimation 
algorithm could be a viable solution. 

In this paper, we present a soft sensing shirt (Fig. 1) that is 
capable of accurately tracking shoulder joint kinematics for 
both cyclic and random arm movements in 3 DOFs, including 
rotations around the longitudinal axis of the arm. The sensing 
shirt consists of 8 textile-based strain sensors sewn around the 
shoulder joint. The presented capacitive sensor design 
demonstrated high linearity, low hysteresis, and enhanced 
immunity to parasitic capacitance, making it suitable for 
wearable multi-DOF tracking. Sensors and cables were 
integrated into the shirt using industry-standard sewing 
machines and processes. Sensor signals were read through a 
customized electronics board and post-processed with an 
ensemble-based regression algorithm to estimate shoulder 
joint angles and angular velocities. The high sensor 
redundancy guaranteed low estimation errors but complicated 
shirt design and computation. To simplify future sensing shirt 
design, we conducted a recursive feature elimination 
(RFE)-based sensor selection analysis to downsize the number 
of required sensors.  

II. SENSOR DESIGN AND FABRICATION 

A. Design and Principle of Operation 

The proposed sensors were based on our previous work 
[24]. As shown in Fig. 2, this fabric-silicone composite sensor 
was composed of two silicone dielectric layers (Dragon Skin 
FX Pro, SmoothOn) sandwiched between three silver-coated 
knit textile electrode layers (Shieldex Medtex P130+B, V 
Technical Textiles). By grounding the top and bottom 
electrodes, the middle electrode provides the sensing signal 
and is passively shielded from parasitic capacitance, 

especially the human body capacitance. To reduce the 
parasitic fringe capacitance, the ground (GND) electrodes 
were designed larger than the embedded signal electrode. 
Dimensions of the sensor were 17 mm wide and 100 mm long 
with a signal area of 5 mm x 70 mm, a dielectric thickness of 
250 μm, and total sensor thickness of 2 mm. The extra 
footprint of the bottom ground electrode provided sensor 
sewability.  

The sensor’s capacitance is determined by the conductor 
area, the insulator thickness, and the insulator dielectric 
properties. We assumed that the dielectric properties remained 
unchanged under deformation, and thus changes in conductor 
and insulator geometries dominated capacitance changes. As 
the sensor is strained, its electrode area increases and dielectric 
thickness decreases, thus increasing sensor capacitance. In our 
three-electrode configuration, the sensor was considered as 
two parallel capacitors, C1 and C2 (Fig. 2 inset). Since the two 
silicone dielectric layers were fabricated with the same 
thickness using the same material, C1 and C2 were assumed to 
be identical. These principles can be represented as: 

ΔC = ΔC1 + ΔC2 = 2ε0εr(ΔA/Δd) 

ΔC is the change in sensor capacitance, ε0 and εr are 
vacuum permittivity and relative permittivity of the silicone 
dielectric, respectively, and ΔA and Δd are changes in 
electrode area and dielectric thickness, respectively. 

B. Fabrication  

 As shown in Fig. 3, sensors were fabricated using a 
stencil-based layered fabrication process. First, conductive 
fabric and stencil materials (P004, Stencil Ease) were cut with 
a laser to make the outlines of textile electrodes and the stencil 
layer. As shown in Fig. 3A, the ground electrode and the 
stencil layer were aligned and stacked on an acrylic base using 
alignment pins. The ends of the signal leads (2936 SL005, 
Alpha Wire) were stripped and sewn to the signal electrodes. 
The signal connections were made before adding the signal 
electrode to the stack so both the signal electrode and signal 
connection would be encapsulated in silicone to prevent them 
from shorting to the ground layer. The silicone dielectric was 
then casted over the extruded stencil with an automatic thin 
film applicator (4340, Elcometer Inc). Next, the signal 
electrode layer was placed on top and the stack was cured in an 

oven at 60C for 20 mins. After the silicone was cured, 
individual sensors were peeled away from the stencil base, 
folded, and adhered with a thin casting of silicone (Fig. 3B). 

Fig. 2.   Layered diagram of the sensor design with scheme of sensor working 

principles 

Fig. 1.   Overview of the soft sensing shirt with zoom-ins on portable readout 

electronics (top), sewn micro-coaxial cable (middle), and sewn capacitive 

soft strain sensors (bottom) 



  

Lastly, as shown in Fig. 3C, the ground lead (2936 SL005, 
Alpha Wire) was stripped and sewn through both the top and 
bottom ground electrodes.  

By adopting laser cutting and thin film application 
processes, this fabrication procedure is precise, rapid, and 
repeatable. Due to the size constraint of the film applicator 
used, a maximum of 6 sensors could be fabricated in one 
batch; however, this number could be scaled up by using a 
larger applicator. 

III. SENSOR CHARACTERIZATION 

A.  Methods 

The capacitive sensors used in the sensing shirt were 
characterized at room temperature using (1) an extension test 
and (2) a cyclical load test. Individual sensors were sewn to 
inextensible textile straps to facilitate the experiments. 
Synchronized mechanical and electrical data were collected 
using a mechanical tester (Instron 5544A, Instron) and a 
capacitance meter (Model 3000, GLK Instruments). The 
characterization setup is shown in Fig. 4A. 

1) Extension Test: To test the sensor’s electrical and 
mechanical characteristics, a sensor was strained by 50% and 
returned to its original length with capacitance, force, and 
extension values recorded. 50% strain was chosen to mimic 
the maximum amount of skin deformation observed around 
the shoulder joint during natural arm movements [25]. To 
simulate the sensor response at different arm movement 
speeds, the extension test was repeated 3 times at speeds of 6, 
12, and 24 mm/sec (tester mechanical limit). To understand 
the sensor limitations, a failure test was conducted by 
stretching the sensor to 250% at the speed of 24 mm/sec. 

2) Cyclical Load Test: The sensor’s fatigue performance 
was evaluated by cyclically straining the sensor to 50% for 
1000 cycles at the speed of 24 mm/sec with a triangle wave 
profile. Sensors were pre-conditioned prior to testing with 20 
cycles at test conditions to mitigate the effect of plastic 
deformation in the fabric-silicone composite [24]. 

B. Results 

(1) Extension Test: The sensor’s electrical response was 
evaluated using gauge factor (GF), which described sensor 
sensitivity and was calculated by dividing ΔC by the sensor 
capacitance at rest length (C0). As shown in Fig. 4B, the tested 
sensor exhibited high linearity and nearly no hysteresis in its 

electrical response. Also, the electrical response was velocity 
independent. These characteristics implied that, when 
integrated into a garment, the sensor’s capacitance would be 
unaffected by motion history or motion speed, making the 
proposed sensor suitable for wearable motion tracking.  

Regarding the sensor’s mechanical response, Fig. 4C 
shows that stretching the sensor to 50% strain required a 
maximum force of 3.8 N. To identify possible restrictive 
impact on normal shoulder kinematics, the maximum force 
was converted to the expected additive joint torque and 
compared to the maximum biological joint torque. As an 
example, a 99th percentile male was expected to have a 
shoulder joint radius of 0.058 m [26]. Assuming the sensor 
applied force at a moment-arm equal to the joint radius, the 
expected additive torque would be 0.22 Nm which was 0.23% 
of the maximum shoulder joint torque reported in literature 
[27]. This small percentage indicated the sensor’s minimal 
impact on shoulder joint movement. Additionally, some 
hysteresis was observed, and the amount of mechanical 
hysteresis was speed dependent. These characteristics implied 
that the sensing shirt would restrict differently depending on 
movement speeds and directions. However, the sensor 
restrictiveness was small enough for the mechanical hysteresis 
to not impact the wearer.  

The failure test showed that the signal was lost at 180% 
strain due to textile mechanical tear. This amount of 
elongation was significantly higher than the expected amount 
of skin deformation around the shoulder joint.  

(2) Cyclical Load Test: As shown in Fig. 4D, a 5% 
decrease in the sensor’s GF was observed after 1000 cycles. 
This degradation was caused by the viscoelastic creep in the 
sensor composite. Due to this phenomenon, under cyclic 
stress, the sensor’s resting length would gradually increase 
leading to increase in C0 and decrease in GF. The effect of this 
signal degradation on long-term kinematics estimation 
accuracy will be investigated in the future.  

Regarding the sensor’s mechanical fatigue, Fig. 4E shows 
a 25% decrease in the sensor’s maximum force at the end of 
the 1000 cycle load test. The large degradation in the sensor’s 

Fig. 4.   (A) Illustration of the sensor characterization setup. (B) and (C) show 

the electrical and mechanical results of the extension test. (D) and (E) show 

the electrical and mechanical results of the cyclical load test. Note: (B) and 

(C), (D) and (E) share x-axis. (B) and (D), (C) and (E) share y-axis. 

Fig. 3.   Stencil based fabrication process of the soft strain sensor. 



  

maximum force was caused by the stress relaxation behavior 
in the sensor materials. This viscoelastic behavior implied that 
the sensing shirt would become decreasingly restrictive with 
continuous usage. 

IV. SHIRT DESIGN 

The garment was designed as a single piece that could be 
worn as an inner shirt. The base of the garment was an athletic 
compression shirt. To capture the shoulder kinematics, 8 
sensors were sewn onto the shirt around the shoulder joint 
using an industrial sewing machine with a flat overlock stitch 
(MB-4DFO, Merrow). When determining the number of 
sensors, more sensors were preferred with considerations of 
shirt complexity and electronics limitations. For sensor 
placement, we wanted to place sensors at locations with 
maximum elongation and, therefore, maximum capacitance 
change. To avoid directions of low elongation, sensors were 
initially placed perpendicular to lines of non-extension [28], 
which are conceptual lines along the human skin where body 
movements cause neither stretching nor contraction. The 
sensor placement was then optimized by iteratively placing 
the sensors at locations and orientations that yield larger 
sensor capacitance changes. Fig. 5A illustrates the designed 
garment with the final sensor placement. 

Micro-coaxial (coax) cables (50MCX-37, Molex 
Temp-Flex) with American wire gauge (AWG) of 42 were 
used as cables connecting between sensors and the readout 
electronics. 42 AWG was selected because of the cable 
sewability and low additive capacitance. These cables 
minimized parasitic capacitance and crosstalk and were sewn 
onto the shirt as the looper thread in an overlock stitch. As 
shown in Fig. 5A insets, sensor-to-cable and cable-to-board 
electrical connections were made by soldering the sewn 
micro-coax cable to the sensor’s conductive leads and to a 
coax cable assembly respectively. The coax cable assembly 
contains an integrated PCB connector harness 
(X.FL-2LP9-032H1TS-A-(300), Hirose Electric Co Ltd) that 
can be easily attached or detached to a surface mount male pin 
connector (X.FL-R-SMT-1(02), Hirose Electric Co Ltd).  

 The readout electronics were composed of a customized 
PCB and a microcontroller. These two components were 
attached to the garment using Velcro tapes. The customized 
PCB digitized sensor capacitance with two off-the-shelf 
capacitance-to-digital converters (FDC2214Q1, Texas 
Instruments). Each converter read up to 4 sensors, up to 600 
pF, at 35 Hz with 28 bits of resolution. The PCB 
communicated via I2C protocol to a microcontroller (MKR 
Zero, Arduino) for data acquisition. The microcontroller was 
then connected to a laptop via USB for power and data 
storage. The electronics schematic is shown in Fig. 5B.  

V. SHOULDER ANGLE AND VELOCITY ESTIMATION 

A.  Data Collection and Preprocessing 

In this study, data were collected in a motion capture 
facility with a single healthy male participant (age: 29, height: 
177 cm, weight: 75 kg). Fig. 6A shows the data collection 
setup. Optical motion capture (mocap) data were collected at 
120 Hz using a Qualisys motion capture system with eight 
infrared cameras. A total of 9 optical tracking markers were 
attached to the participant on the following anatomical 
landmarks: C7, T8, IJ, PX, AC, EL, EM, RS, US [29]. The 
sensing shirt data were recorded simultaneously with the 
mocap data at 35 Hz. Mocap and sensing shirt signals were 
synchronized to 35 Hz using MATLAB in post-processing.  

Mocap shoulder joint angles were used as the ground truth 
and were calculated from the three-dimensional marker 
trajectories using a biomechanical model [29] in Visual3D 
(C-Motion). As shown in Fig. 6B, mocap humerus joint angles 
(θHF, θAB, θIR) were defined relative to the thorax in Euler 
angles (Y-X-Y order). The Y-X-Y Euler angles were 
recommended by the International Society of Biomechanics 
and were close to the clinical definitions of degrees of 
horizontal flexion/extension, abduction/adduction, and 
internal/external rotation [29]. Ground truth shoulder angular 
velocities (ωHF, ωAB, ωIR) were calculated by finding time 
derivatives of the mocap joint angles. 

Fig. 5.   (A) 2D illustrations of the shirt design with main components color 

coded and insets detailing sensor to cable and cable to board connections.  

(B) Data flow schematic. 

Fig. 6.   (A) Illustration of the data collection setup in the motion capture lab. 

(B) Definition of the Y-X-Y shoulder joint angles. 



  

As shown in Fig. 7A, the participant performed 210 
seconds of random shoulder movements followed by 280 
seconds of cyclic shoulder movements. Cyclic movements 
consisted repetitive shoulder horizontal flexion/extension 
(HF), abduction/adduction (AB), internal/external rotation 

(IR) at 90 abduction, arm circles (HF+AB), HF while IR 
(HF+IR), AB while IR (AB+IR), and single arm Fig. 8 motion 
(Fig 8). Each cyclic movement was performed for 20 cycles 
and 40 seconds in duration. For time series data, train-test 
splitting must respect the temporal order in which data were 
collected. Therefore, for each recorded shoulder movement, 
the first 80% of the data were used as training set and the last 
20% were used as testing set. As shown in Fig. 7B, training 
and testing sets were concatenated into joint training and 
testing sets. Shoulder kinematics estimation models were built 
using the concatenated training set and evaluated using the 
random, cyclic, and full movement testing sets.  

B.  Regression Model 

To maximize kinematics estimation accuracies, estimation 
models were trained using the sensing shirt signals from 
multiple time frames instead of from a single time frame. 

Training with a temporal sequence of shirt signals allowed the 
regression algorithm to more accurately estimate joint 
velocities and learn the basic principles of human movements, 
e.g., human motion should be smooth and continuous. The 
temporal sequence length was tuned using forward chaining 
cross-validation. The optimal sequence was from past 5 time 
frames (0.14 seconds) to future 3 time frames (0.086 seconds). 
The inclusion of future time frames meant that the estimations 
would be delayed by 0.086 seconds. Such lag could be 
reduced at the expense of larger estimation errors.  

Estimation models were trained with CatBoost regression 
[30], a machine learning algorithm based on gradient boosting 
over decision trees. This algorithm outperformed other tested 
methods, including linear, 3rd order polynomial, k-nearest 
neighbors, decision tree, and support vector machine 
regressions, by increasing estimation accuracies by more than 
10%. CatBoost regression is a non-parametric method, 
making no assumption of the underlying mapping function. 
Such flexibility enabled the algorithm to learn complex 
relationships between sensor deformation and multi-DOF 
shoulder movements. Furthermore, CatBoost regression is a 
single-target method which is restricted to estimating only one 
variable. To estimate all 6 kinematics variables, 6 CatBoost 
regression models were chained to sequentially estimate θHF, 
θAB, θIR, ωHF, ωAB, and ωIR using the regressor chain method 
[31]. With this technique, outputs from previous models were 
included as additional inputs for the current model. Compared 
to training 6 models in parallel, such reliance on previous 
regression output improved estimation accuracies by enabling 
models to learn Euler angles’ sequence dependency.  

C.  Estimation Performance 

The performance of joint angle and velocity estimations 
were evaluated using RMSEs and normalized RMSEs 
(NRMSEs) respectively. NRMSEs were used for velocity 
estimation evaluation for ease of interpretation. NRMSEs 
were calculated by dividing velocity estimation RMSEs by the 
velocity min-max ranges obtained from the training set.  

Fig. 8.   Visualization of estimation performance on all tested arm movements. 

Fig. 7.   (A) Experimental protocol with the blocks from left to right 
representing the recorded shoulder movements in time sequence with 

numbers showing the duration in seconds. (B) Scheme for training and 

testing  sets where blocks follow the same movement order as (A). 
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The random, cyclic, and full movement test errors are 
listed in Table 1 and visualized in Fig. 8. Estimation errors of 
random movements were slightly higher than those of cyclic 
movements and tracking internal/external rotation was less 
accurate than tracking the other two DOFs. Because the sensor 
capacitance change was independent of strain rate, estimation 
errors appeared to be uncorrelated with joint velocity. 
However, as shown in Fig. 8, estimation errors of θHF and θIR 
were larger when θAB was closer to zero. When the second of 
the three Euler angles approaches zero, the first and third 
rotation axes are aligned which leads to singularity. At or close 
to singularity, there could exist multiple valid solutions, 
thereby contributing to increased errors. Despite the existence 
of singularity-free representations, such as unit quaternions, 
Euler angles were used in this study because they were simple 
and intuitive and required less variables to estimate. 

TABLE I.  JOINT KINEMATICS ESTIMATION ERRORS 

Motion Joint Angle RMSEs Joint Velocity NRMSEs 

HF () AB () IR () ωHF (%) ωAB (%) ωIR (%) 

Random 3.47 1.88 4.41 2.95 2.98 3.77 

Cyclic 2.07 1.42 3.89 1.69 1.99 3.15 

Full 2.80 1.64 4.13 2.35 2.49 3.45 

 

Velocity NRMSEs of the full movement corresponded to 
RMSEs of 18.28 (ωHF), 10.76 (ωAB), and 26.59 (ωIR) deg/sec. 
Instead of training dedicated regression models, joint 
velocities could also be estimated by taking time derivatives of 
joint angle estimates. However, doing so yielded NRMSEs of 
3.84% (ωHF), 5.77% (ωAB), and 5.67% (ωIR), worse than the 
ones reported in Table 1. This performance difference justified 
the necessity of the dedicated velocity estimation models.  

Kinematics estimations took less than 0.12 milliseconds 
on average using a CPU (2.7GHz quad-core Intel Core i7). 
This prediction rate was faster than the sampling rate (35 Hz), 
indicating the capability of estimating in real-time. Besides 
real-time estimation, future work will also focus on 
accounting for variation in human body size and sensor 
position drift from donning/doffing or long-term usage. 
Potential solution could be characterizing and predicting 
these variables via data-driven or model-driven approaches or 
fusing soft sensors with other sensing modalities, like IMUs.  

VI. SENSOR DOWN SELECTION 

A.  Methods 

The high sensor redundancy generated low estimation 
errors. However, reducing number of sensors would simplify 
shirt design and benefit integration with a shoulder assistive 
robot such as [32]. To this end, the minimal set of required 
sensors was determined from the current sensor configuration 
via a recursive feature elimination-based sensor selection 
analysis. This approach recursively fits estimation models and 
removes the feature with the lowest importance rank until a 
pre-determined criterion is met, e.g., meeting specified 
number of sensors or highest acceptable errors. Each sensor’s 
importance rank was calculated by ranking the sum of its 
feature importance values across all 6 estimation models. The 
feature importance value was a built-in attribute of CatBoost 
regression and described the relevance of each feature in 
constructing the decision trees. Here, we trained the models 

with the concatenated training set, evaluated with the full 
movement testing set, and terminated with one sensor left. 

B.  Results 

The average of NRMSEs from all 6 estimation models was 
used as the evaluation matrix. The analysis result is shown in 
Fig. 9 with letter labels representing the dropped sensor at 
each iteration. For example, with 4 sensors, sensors H, E, A, 
and B were the optimal sensor set with sensors F, C, G, and D 
dropped from the analysis. Since sensor B was not dropped in 
any iteration, it was the most significant sensor in this study. 
Additionally, models trained with 5 sensors (G, D, H, E, and 
A) still have averaged NRMSE less than 10% increase 
compared to using all 8 sensors, indicating the feasibility of 
downsizing sensor set for future shirt designs. The estimation 
error increased dramatically when the number of sensors was 
less than 4, indicating the need to have more sensors than the 
number of output DOFs.  

In future work, this feature selection analysis can be 
adapted to find optimal sensor configuration for specified arm 
movements or DOFs. This adaptation can be achieved by 
training with data representative of interested movements or 
by using an evaluation matrix that only includes interested 
DOFs. Furthermore, to find more generalizable optimal sensor 
locations, the analysis needs to be trained with data collected 
from both genders and participants with different body sizes 

VII. CONCLUSION 

In summary, we presented a sensing shirt based on soft 
capacitive strain sensors capable of accurately estimating 
shoulder joint angles and angular velocities in 3 DOFs for both 
arbitrary and rhythmic arm movements. Using RFE based 
sensor selection analysis, we developed a tool for finding 
optimal sensor placements. These preliminary results motivate 
further study to investigate the performance of the shirt under 
more practical applications. In particular, it will be interesting 
to study the effects of long-term usage, donning/doffing, and 
variability in human body size and shape. More specifically, 
understanding and compensating for sensor to skin and skin to 
skeleton movements are important for further advancement of 
wearable motion tracking.  
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