
  

  

Abstract— We present an autonomous and portable hip-only 
soft exosuit, for augmenting human walking and running that 
assists hip extension by delivering peak forces of 300N to the 
user. Different fixed assistance profiles for walking and running 
were applied based on an online classification algorithm. The 
approach is based on the biomechanical understanding that the 
center of mass potential energy fluctuations during walking and 
running are out of phase. Specifically, we monitor the vertical 
acceleration with an abdomen-mounted IMU at the moment of 
maximum hip extension. Validation is demonstrated with six 
subjects on the treadmill and with eight subjects outdoors. Our 
results demonstrated a 99.99% accuracy on average 
over the fourteen participants for various speeds (0.5 – 4m/s), 
slopes (-10 – 20%), treadmill and overground terrain, loaded 
(13.6 kg) and unloaded, Exo On and Exo Off conditions, and 
different shoe types. Results from an evaluation outdoors 
overground on the energetics of eight subjects demonstrated a 
significant reduction for running when comparing Exo On to No 
Exo (3.9%) and for walking and running when comparing Exo 
On to Exo Off (12.2% and 8.2% respectively). This study 
represents the first demonstration of an autonomous wearable 
robot reducing the energy cost of running. Significant variation 
in response across subjects was observed, highlighting further 
improvements may be possible via assistance profile 
individualization with human-in-the-loop optimization. 

I. INTRODUCTION 

Lower limb wearable exoskeletons have been developed 
for a wide range of applications, including assisting or 
augmenting human locomotion and rehabilitation [1-11]. In 
the field of human performance augmentation in particular, 
the past decade has seen remarkable breakthroughs in 
exoskeletons that are able to reduce the metabolic expenditure 
of walking [3-11]. 

Initially, tethered devices were the first to achieve a net 
metabolic reduction during walking. Sawicki et al. used 
artificial pneumatic muscles at ankle joints and showed a 
statistically significant reduction beyond the level of walking 
without exoskeleton at 1.75m/s out of several speeds tested 
[3]. Similarly, Malcolm et al. showed a 6% metabolic 
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expenditure reduction using a tethered pneumatic ankle device 
at 1.38m/s, which is closer to preferred walking speeds [4]. 
Following the aforementioned work with tethered systems, an 
ankle exoskeleton came out achieving the first net metabolic 
reduction with an autonomous system (8%) for subjects 
walking at 1.5m/s with a 23kg load [5]. After that, there have 
been a number of wearable robots showing even greater net 
metabolic reduction during walking. Some of them assisted 
the ankle joint [8], and the others assisted the hip [9, 10] or 
both of them [11]. 

More recently, with the growing interest in augmenting 
human walking, various groups began to explore how 
wearable robots can be used to augment human running. 
Initial pivotal studies that were the first to address this goal 
highlighted some of challenges and, despite their elegant 
designs, were not able to demonstrate a reduction in energy 
cost. Specifically, Elliott et al. presented an elastic knee 
exoskeleton engaged by a clutch and showed an average 
27.3% increase in net metabolic cost when running at 3.5m/s 
compared to running without a device [12]. In another study, 
Cherry et al. developed a pseudo-passive elastic exoskeleton 
to assist running by adding stiffness in parallel with the entire 
lower limb, and found an average 58.1% increase in metabolic 
cost when running with the exoskeleton at 2.3m/s compared to 
running without it [13]. 

The results from these past studies can provide us with 
insights to guide the development of future systems. When 
considering the design of a wearable robot to assist running, it 
is clear that minimizing the added mass of the system is 
critical. While doing so is also important for walking, it is 
likely more critical for running as the metabolic cost of 
carrying weight is higher during running than walking [14, 
15]. Furthermore, this penalty increases exponentially as the 
weight becomes more distal, which limits the energy benefit 
from wearable devices [14-16]. 

Our group has been developing soft exosuits for 
augmenting the normal muscle work of healthy individuals 
[17] as well as restoring function for physically impaired 
people such as patients poststroke [18, 19]. Exosuits provide 
particular advantages for assisting human motion as they 
minimize restrictions to the wearer, do not significantly 
increase the inertia of limb segments, and eliminate the need to 
carefully align a robot with biological joints. While much of 
our work to date has focused on walking [11, 17, 20-28], we 
believe this approach holds promise to assist with both 
walking and running. We recently showed that a tethered soft 
exosuit that assists hip extension could reduce the metabolic 
cost of running by 5.4% when compared to no suit [29] with a 
simulation-optimized force profile [30]. Part of the motivation 
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for assisting the hip joint was that, as mentioned previously, 
there is an increased metabolic penalty when mass is attached 
distally to a person. Furthermore, a system assisting the hip 
joint only needs to attach to the waist and upper leg and so can 
be simplified compared to a full leg system. 

From an understanding of the biomechanics of walking 
and running [31], as well as our past studies [27, 29], it seems 
likely that different assistive profiles are required for these 
different activities. Further motivating the fact that walking 
and running require different assistance strategies is that lower 
limb muscles show different activation patterns for walking 
and running [32, 33]. To this end, we need to further develop 
an online algorithm that detects walking and running 
accurately and robustly. 

Activity classification in general has already been studied 
extensively, as described in this review paper [34]. Besides, in 
the field of wearable robotic devices, determination of the 
user’s steady-state activity, as well as the transitions between 
them, is considered as one of the primary role of the high-level 
controller [35]. In particular, the latency, accuracy, and 
number of activities recognized by the classifier must be 
carefully balanced in order to avoid triggering hazardous or 
suboptimal control mode changes. 

When looking at how to distinguish walking and running 
gaits, we can consider them from a spatiotemporal, kinematic, 
biomechanical, or muscular point of view [31-33, 36-38]. A 
spatiotemporal difference is the duty cycle of stance phase 
which is greater than 0.5 for walking and less than 0.5 for 
running. Furthermore, prior studies have shown that at 
mid-stance, the center of mass (CoM) is highest for walking 
but lowest for running, meaning that the leg is relatively 
straight for walking, while the hip, knee and ankle are more 
flexed during running [31]. In line with this, walking can be 
modeled as an inverted pendulum, efficiently exchanging 
potential and kinetic energy out of phase with every step. On 
the other hand, during running, a mass-spring mechanism 
causes gravitational potential energy and forward kinetic 
energy to be in phase [31, 36, 37]. 

In past work, Parkka et al. proposed a decision tree 
classifier using inertial measurement units (IMUs) on the chest 
and the wrist to distinguish walking and running [39]. They 
used the peak frequency of the chest vertical acceleration, 
which is equivalent to the step frequency, as well as the peak 
power of the same signal. However, those features do not rely 
on a strong definition of running, and they show distribution 
overlap between walking and running, which resulted in an 
overall classification accuracy of 86%. Two other candidate 
features, the amplitude of the vertical acceleration at the back 
[40] and the power spectral entropy of the acceleration at the 
hip and the dominant wrist [41], were also suggested in 
another study. However, it was not thoroughly evaluated 
whether they are discriminative enough in a wide range of 
speeds, slopes, and anthropometrics of different participants. 

In terms of walking and running detection with a wearable 
robot, Shultz et al. designed an algorithm for a knee and ankle 
prosthesis [42]. They proposed a set of threshold crossing 
rules which solely rely on shank load, acceleration, and 
estimated cadence. However, this approach is not suitable for 
use cases that aim to avoid the use of distally mounted sensors 

(e.g. to minimize system complexity). For exoskeletons, a stair 
ascent and descent detection algorithm was developed using 
data from sensors at the hip joint and a back-mounted IMU 
[43], but to date we are not aware of any exoskeletons that 
classify walking and running gait modes. 

In this paper, we present an autonomous and portable 
hip-only soft exosuit that is able to distinguish between 
walking and running activities. Our proposed detection 
algorithm is based on the biomechanical definition that the 
potential energy during the stance phase of walking is out of 
phase with that of running. With this algorithm, the user can 
freely choose to either walk or run at a self-selected gait speed, 
and the exosuit automatically updates the assistance profile 
applied by the actuator based on the activity of the wearer. In 
the following sections, we explain an overview of our hip-only 
system: suits, actuators, sensors, and control architecture. In 
addition, we describe the underlying biomechanical aspects of 
walking and running, introduce the robust and reliable feature 
used to distinguish between them, and then describe the 
algorithm in detail. Lastly, we present the accuracy and 
robustness of the algorithm for many different conditions, and 
show the performance of our autonomous system by 
quantifying its impact on wearer energetics during walking 
and running overground outdoors. 

II. SYSTEM DESCRIPTION 

A. Functional apparel components 
The front and back views of the hip-only soft exosuit are 

shown in Figure 1. The overall suit, consisting of a spandex 
baselayer, a waist belt, two thigh braces, and a battle belt, 
includes a number of improvements over the previous 
hip-only exosuit [29, 44]. The apparel components incorporate 
high-friction materials over specific body areas in the 
baselayer to help the exosuit stay properly anchored and 
aligned during walking and running. The waist belt and thigh 
braces are made of a custom sailcloth material that is lighter 
than previous materials and eliminates many more layers of 
textile compared to the previous suit. The thigh brace design 
has been reduced from multiple sizes to a single adjustable 
size. This is achieved with a closure system that laces up the 
thigh and tightens comfortably with a user-friendly dial (L4, 
Boa Technology Inc., CO, USA). The battle belt is used to 
mount the actuation unit at the back of the wearer and has been 

 
Figure 1. Overview of a hip-only soft exosuit. An actuator and a battery are 
mounted on the lower back and the bottom part of abdomen, respectively. 
Two sets of Bowden cables from the actuator are connected to the soft 
exosuit to provide hip extension assistance. 

 



  

modified from a commercial product (VC-Time Tactical Belt, 
VC-Time, USA). 

Three IMUs (MTi-3 AHRS, Xsens Technologies B.V., 
Enschede, Netherlands) are mounted on the abdomen and the 
anterior part of each thigh. The IMU on the abdomen 
measures CoM acceleration in the global frame to distinguish 
walking and running gaits. The two IMUs on the thighs 
measure the thigh segment angle to detect maximum hip 
flexion (MHF) and maximum hip extension (MHE) gait 
events. 

B. Actuation unit 
As shown in Figure 1, a two-degree of freedom (DoF) 

actuation unit is mounted at the wearer’s back, and the 
anchoring points of the Bowden cables are at the bottom left 
and right of the waist belt as well as at the middle center of the 
thigh braces from the posterior view. The motors deliver 
active assistance by retracting the inner Bowden cable that 
then generates an assistive torque at the hip joint. Two load 
cells (LSB200, FUTEK Advanced Sensor Technology, Inc., 
CA, USA) are integrated into the anchoring point of each thigh 
brace to measure the cable force. 

Each DoF consists of an electronically commutated 4-pole 
power motor (#305013, Maxon, Switzerland) that is 
connected to a gearbox of ratio 51:1 (#326664, Maxon, 
Switzerland) and drives a 40-mm radius multi-wrap pulley. 
An incremental encoder (#225778, Maxon, Switzerland) that 
has 2000 pulses per revolution is mounted on the motor to 
measure the motor position. A servomotor driver (Gold 
Twitter, Elmo Motion Control Ltd., Israel) integrated into a 
custom electronic board controls each motor in a closed loop. 
A removable battery consisting of two 6-cell Li-Po units 
(3.7Ah) is placed on the abdomen and it lasts approximately 
7.5 km with a peak force of 300N. The overall system weight 
is 4.7 kg including 2.6 kg of the actuation unit, 1.1 kg of suit 
components and sensors, and 1.0 kg of battery. 

C. Control system architecture 
The goal of the controller is to deliver hip extension force 

in synchrony with human gait dynamics. An IMU-based 
iterative algorithm detects MHF by tracking the sign change in 
angular velocity from the thigh IMU and estimates the 
wearer’s phase in the gait cycle based on that gait event [28]. 
A force-based position controller is used to create the hip 
extension force profile with desired onset, peak, and end 
timings. This iterative controller adjusts the timing and 
magnitude of the motor position profile on a step-by-step basis 
to consistently deliver the assistive force profile despite 
variability in the wearer’s gait or migration of suit components 
[28]. 

An Atmel 32-bit microcontroller unit (MCU) 
(ATSAME70N21, Atmel Corporation, CA, USA) is used to 
perform high-level controller calculations at 1kHz, to 
communicate with the motor controllers, sensors, host laptop, 
and to save high-frequency system data on an SD card. The 
8-bit microprocessor units (PIC18F25K80, Microchip 
Technology Inc., AZ, US) attached to each IMU are used to 
read analog force signals from the load cell as well as 
kinematic information (Euler angles, angular velocities, 
accelerations) for all three axes from the IMU via a universal 
asynchronous receiver/transmitter (UART). In order to get a 

drift-free orientation estimate, each IMU is equipped with a 
built-in sensor fusion algorithm based on extended Kalman 
filter. The controller area network (CAN) communication 
protocol is used for communication between the 8-bit MCUs, 
motor controllers, and the 32-bit MCU. In addition, the 32-bit 
MCU communicates with the host laptop via a Bluetooth 
module (BT900-SC, Laird Technologies, UK) at 100 Hz for 
real-time data visualization, while simultaneously saving 
system data in the onboard SD card 
(SDSQUNC-032G-AN6IA, Sandisk, CA, US) at 1 kHz. 

III. ONLINE WALKING AND RUNNING 
 DETECTION ALGORITHM 

A. Biomechanical differences between walking and running 
During human locomotion, the forward kinetic energy (Ek) 

of the center of mass (CoM) oscillates similarly as a function 
of the gait cycle for walking and running, as it is minimal at 
the mid-stance for both gait modes [31, 37]. However, the 
potential energy (Ep) of the CoM fluctuates differently: at 
mid-stance, it is maximal for walking (i.e. out of phase with 
kinetic energy) and minimal for running (i.e. in phase with 
kinetic energy) as shown in Figure 2, which implies that Ep 
could be used as a feature to distinguish between walking and 
running activities. 

The potential energy is calculated by the following 
equation  

 Ep = mghCoM, (1) 

where m, g, and hCoM are the mass, the gravitational 
acceleration, and the CoM height, respectively. Because m and 
g are constant, the potential energy is directly proportional to 

 
Figure 2. Forward kinetic energy (Ek), gravitational potential energy (Ep), and 
the CoM vertical acceleration (az,CoM) of a representative participant during 
walking at 1.5 m/s (left/black) and running at 2.5 m/s (right/red) measured by 
a motion capture system (Vicon, Oxford, UK) in our previous study [46]. Ek 
and Ep are calculated based on the horizontal velocity and the vertical 
position of the motion capture markers at the left and right iliac crests. The 
solid lines and shaded light regions represent the average and the standard 
deviation of ten strides, respectively. The horizontal axis is the gait cycle 
segmentation based on heel strike (º GCHS) by measuring the ground reaction 
forces from an instrumented treadmill (Bertec, OH, USA). The black and red 
bars on the gait cycle axis represent the stance phase of the right leg, and the 
remaining portion corresponds to swing phase of the same leg. Maximum hip 
extension (MHE) is marked as a triangle. 

 



  

hCoM, which means that hCoM can be used as a feature instead of 
Ep to distinguish walking and running. Unfortunately, it is 
challenging to estimate hCoM reliably and accurately for an 
extended period of time using body-worn sensors because of 
drift-inducing estimation errors [45]. Instead, the CoM 
vertical acceleration, az,CoM, can be extracted relatively easily 
using an IMU. Furthermore, since az,CoM and hCoM are strongly 
related to each other as follows 

 !",$%& = ()*+,-
(.)   , (2) 

az,CoM during the stance phase should also show a contrasting 
trend between walking and running. 

First, we explored the feasibility of using the az,CoM signal 
to differentiate between walking and running using motion 
capture data collected as part of a prior study [46]. As we 
speculated in the previous section, az,CoM had a clearly 
different profile for the stance phases of walking and running: 
at mid-stance, it is minimal for walking and it is maximal for 
running, as illustrated in Figure 2. Note that the stance phase 
portion occurs approximately from 0% to 60% for walking 
and from 0% to 40% for running. 

An additional challenge was to leverage sensors in the 
system to be able to estimate this difference in az,CoM. Indeed, 
the stance phase (i.e. heel-strike) cannot be detected accurately 
and robustly using only body-worn sensors above the knee 
joint, which means that it is difficult for the controller to detect 
the mid-stance timing. Thus, another gait event that is able to 
catch the contrasting aspect of az,CoM is needed. As shown in 
Figure 2, maximum hip extension (MHE), marked as triangles, 
coincide with a minimum and maximum in Ep for walking and 
running, respectively. In addition, the corresponding az,CoM at 
MHE (which is close enough to toe-off timing for both 
walking and running, as shown in Figure 2) is positive for 
walking and negative for running. 

B. Feature selection – The global frame vertical acceleration 
of the abdomen IMU at MHE 

Our team has previous experience in detecting gait events 
using IMUs [28]. Since the MHE can be reliably extracted 
using thigh IMUs, we propose that using IMUs mounted on 
the abdomen and both thighs can extract the feature of interest. 

First of all, the CoM vertical acceleration (az,CoM) can be 
approximated by the vertical acceleration of the abdomen 
IMU (az,abd.), as shown in Figure 3. To compute this, the global 
frame (East-North-Up) abdomen acceleration was computed 
from the local frame (i.e. body-attached sensor frame) 
acceleration by the following equation 

 

!",$%&.
!(,$%&.

!),$%&. + +
= -) . -( / -" 0 ∙ !$%&.234$2 . (3) 

where ax,abd., ay,abd., az,abd. are the x-, y-, and z-components of 
the global frame acceleration of the abdomen IMU. Here, the 
z-direction is parallel to gravity. !  , !  , and !   are the three 
Euler angles of the abdomen IMU: roll, pitch, and yaw angles, 
respectively. !" #   , !" #   , and !" #    are the rotation 
matrices with respect to the x-, y-, and z-axis, respectively. 
!"#$.&'("&   is the abdomen IMU acceleration in the local frame. 

Based on motion capture data analysis in Section III. A, we 
selected our feature as the global frame vertical acceleration of 
the abdomen IMU (az,abd) at MHE, which is called the 
abdomen feature (fA). We further validated the robustness of 
this abdomen feature for different slopes and speeds. In Figure 
3, the global frame vertical acceleration of the abdomen IMU 
(az,abd.) is shown for a representative participant. Signals were 
segmented based on MHE of the right leg, which corresponds 
to 0% on the x-axis. Even though small variations in the timing 
of the MHE were observed (e.g. walking downslope or 
running upslope exhibiting feature values closer to 0), the 
abdomen feature was found to be robust enough from a 
biomechanical point of view. 

C. Implementation of online detection algorithm 
An online walking and running detection algorithm is 

implemented on top of the force-based position controller 
according to the structure shown in Figure 4. As mentioned in 
Section III. B, the abdomen vertical acceleration at MHE (fA) 
is used as a distinctive feature between the two gait modes. 
Using this, a heuristic rule-based classifier relies on 
thresholding of this feature to classify each step as either 
walking or running gait, and combines the independent 
outputs obtained from each leg. The system will switch its gait 
mode and corresponding assistance profile to the other only if 
the walking/running flags from both legs are changed. A 
unique rule, using 0 m/s2 as a threshold, could be used given 
the biomechanical definition of the feature, but a small 
tolerance margin – that is the same for all subjects – is 
implemented to increase reliability. 

Note that supplementary conditions on the acceleration 
signal are verified in the heuristic rule-based classifier to 
increase robustness for various slope and speed conditions as 

 
Figure 3. Global frame vertical acceleration of the abdomen IMU (az,abd.) of a 
representative participant walking and running on treadmill at various slopes 
and speeds. The black-hued plots are for walking, and the red-hued plots are 
for running. The gait cycle is segmented based on MHE (ºGCMHE) using the 
angular velocity of thigh IMU. Thus, the value at 0% corresponds to the 
abdomen feature. The 2 m/s speed condition is included in both walking and 
running, because it is close to the walk-to-run transition speed. 

 



  

well as for inter-subject variability in gait kinematics: To 
avoid spurious and frequent switching of the gait mode flag, 
the algorithm checks that the feature is above (or below for 
walk-to-run transition) a given threshold for at least two 
consecutive steps before triggering a run-to-walk transition. 
However, when the feature value goes from a strongly positive 
to strongly negative value, or vice-versa, the controller allows 
a faster one step based transition. In this case, the thigh vertical 
acceleration (az,thigh) at MHE, called the thigh feature (fT), is 
additionally checked in a similar way to confirm the fast 
transition. This strategy allowed the algorithm to be sensitive 
enough to prevent uncomfortable situations when transiting 
between locomotion modes, but ensured an increased 
robustness during steady-state locomotion. 

D. Walking and running profile switching controller 
At the end of each step, motor position amplitudes are 

stored separately for walking and running modes. When a 
transition is detected, the high-level controller retrieves the 
memorized position level previously recorded from the last 
three steps corresponding to the new gait mode and updates 
the current motor position command based on this, allowing 
for fast transitioning of profiles. 

IV. HUMAN SUBJECT EXPERIMENTS 

Two types of human subject experiments were conducted. 
First, we evaluated the detection algorithm during treadmill 
tests. After ensuring the accuracy of the algorithm, overground 
tests were conducted to validate the robustness in a real-world 
environment. In addition, the energy expenditure of 
participants was collected to determine the metabolic effects 
of the soft exosuit. 

A. Treadmill tests 
The walking and running detection algorithm was 

evaluated for six participants (28 ± 2 years old; 176.5 ± 8.5 
cm; 76.0 ± 12.9 kg) walking at three different speeds (1, 1.5 
and 2 m/s) and running at four different speeds (2, 2.5, 3 and 
3.5 m/s) on a treadmill (PPS MED, Woodway, WI, USA) for 
various inclines (-10, -5, 0, 5, 10, 15 and 20 %). For decline 
conditions, the testing speed was limited to 2.5 m/s due to 
treadmill specifications. For all conditions, the system was 
worn but not actuated. Apart from its weight, no additional 
load was carried, and the participants wore their own 
comfortable sneakers. In order to confirm the robustness of the 
algorithm for even extreme cases, a randomly selected 
participant tried a loaded condition (13.6 kg) while wearing 
military boots for all the aforementioned condition with 

additional 0.5m/s walking and 4.0m/s running conditions. For 
each slope condition, the participant stepped onto the 
treadmill, walked or ran for 40 steps, stepped off and the speed 
condition was changed. IMU signals and algorithm output 
were streamed at 100 Hz from the system to a host laptop via 
Bluetooth. For each trial, the first three steps recorded were 
discarded due to the short transition periods between rest and 
locomotion at certain speeds. 

The algorithm was able to differentiate walking and 
running perfectly for all the conditions even given the 
variability in the participants, locomotion speeds, and slopes. 
Indeed, the full detection algorithm combining both features 
with the classification rules mentioned before perfectly 
predicted the actual locomotion modes for each stride, as 
shown by the confusion matrix in Figure 5(a). 

This can be explained by looking at the distribution of the 
abdomen feature shown in Figure 5(b). Specifically, the 
distributions for walking and running do not overlap at all, 
which indicates reliability and robustness of such a distinctive 
feature. The mean and standard deviations of the abdomen 
feature are 3.23 ± 1.19 m/s2 (walking) and -6.82 ± 1.12 m/s2 
(running), respectively. 

B. Overground tests 
As shown in Figure 6, an overground pilot test was 

performed with eight participants (28 ± 3 years old; 181.0 ± 
7.9 cm; 78.4 ± 9.0 kg) to evaluate the performance of the 
detection algorithm and human metabolic responses during 

 
Figure 4. Controller algorithm outline depicting the classification of gait modes. Starting from a thigh and abdomen IMU signals as inputs, features (fT – thigh 
feature, fA – abdomen feature) residing in the vertical acceleration, which is based on the dynamic definition of walking and running, are extracted and a 
heuristic rule-based classifier distinguishes walking and running gaits. The classifier output is then used to switch assistance profiles. The step-by-step motor 
position profile is updated when MHF is detected, as described in [28]. The gait cycle is segmented based on MHF (ºGCMHF). 

 

 
Figure 5. The performance of proposed detection algorithm for all the 
participant, speed, and slope conditions during treadmill tests. (a) Confusion 
matrix for the detection algorithm accuracy. The rows are the ground truth 
and the columns are the predicted result output by the proposed algorithm. 
The off-diagonal elements in this matrix are detection errors. (b) Abdomen 
feature (fA) distributions. The red histogram bar represents the ground truth 
of running and the black ones are the ground truth of walking. The feature 
shows negative value for running and positive for walking. The blue solid 
line is a theoretical boundary (= 0 m/s2), and dotted line represents a small 
tolerance margin for thresholds allowing increased robustness. 

 



  

walking and running. All participants reported no history of 
musculoskeletal injuries or other musculoskeletal diseases 
and provided written informed consent prior to participating 
in the study. The study was approved by the Harvard Medical 
School Committee on Human Studies. 

The protocol consisted of three trials: one without 
wearing the device (No Exo), another with the soft exosuit 
unpowered (Exo Off), and one powered with the actuator 
providing a peak cable force of 300 N, which corresponds to a 
peak moment of 0.37 Nm kg-1 (Exo On). Each trial consisted 
of a 2.2 km course with four laps of 550m. The participants 
completed the first lap by walking at 1.5m/s, the next two laps 
by running at 2.5m/s, and the last lap by walking again at 1.5 
m/s. Five cone markers were placed every 110m and a 
pacemaker monitored the walking speed with a stop watch to 
maintain a constant gait speed. The order of trials was 
randomized across participants and a minimum ten-minute 
rest was taken between the trials to prevent any fatigue 
effects. 

In order to evaluate the robustness of the detection 
algorithm, a research team member carrying the control laptop 
manually marked a controller flag when a walk-to-run or 
run-to-walk transition was observed in the participant’s gait. 
This was used as the ground truth signal for evaluation. The 
timings of those marks were later corroborated by looking at 
step frequency during post processing of the data. The one step 
before and after the ground truth of gait mode change were 
labeled as transition periods. 

The typical evolution over time of the abdomen feature 
and the detection algorithm output are reported together with 
the ground truth in Figure 7(a) for a single representative 
participant. The full algorithm accuracy is reported in Figure 
7(b) for the eight participants’ Exo On trial. To illustrate the 
detection algorithm performance, the feature distribution for 
the current and previous step from both legs taken separately 
is shown in Figure 7(c). 

The detection algorithm accuracy was 100 % for walking 
and 99.96 % for running, as shown in Figure 7(b). Note that 
the only two steps that were incorrectly classified occurred 
immediately after walking to running transitions, indicating a 
slightly longer transition delay, but no robustness issue. Figure 
7(c) shows how transition steps are identified correctly from 
the abdomen feature changing from strongly positive to 
strongly negative values for walk-to-run transitions, and vice 
versa for run-to-walk transitions, in only one step. During 
steady-state locomotion, the feature always lies within the 
boundaries defined by the classifier (i.e. black region for 
walking and red region for running). 

Metabolic cost was assessed using indirect calorimetry 
with a portable gas analysis system (K4b2, Cosmed, Roma, 
Italy), which enabled the measurement of expired gas 
concentrations and volumes. Carbon dioxide and oxygen rates 
were used to calculate metabolic power with the Brockway 
equation [47]. Net metabolic power was obtained by 
subtracting the metabolic power obtained during a standing 
trial performed at beginning of the No Exo trial from the 
metabolic power of each trial (No Exo, Exo Off, and Exo On). 
The metabolic power for walking and running were obtained 
by averaging the last two minutes of the first and last laps, and 
the last two minutes of the third lap, respectively, to get 
steady-state value during each gait mode. 

During walking, Exo On reduced the metabolic cost of 
walking with respect to No Exo and Exo Off and by 2.7% 
(range -12.3 to 24.4%) and 12.2% (range 3.4 to 32.7%), 
respectively with a negative value representing an increase in 
metabolic cost in some cases. During running, Exo On 

 
Figure 6. The overview of the outdoor test setup. The participant wore the 
hip-only soft exosuit. The pacemaker guided the participant while checking 
the elapsed time between the cone markers in order to maintain the gait speed 
as specified in the protocol. The metabolic cost was assessed by indirect 
calorimetry using a portable gas analysis system. The system data of the 
hip-only soft exosuit was recorded and visualized with a host laptop via 
Bluetooth communication. 

 

 
Figure 7. Performance of the proposed detection algorithm for all the 
participants’ Exo On trial during overground tests. (a) Typical evolution of 
the abdomen feature (fA) over time (left MHE based: black, right MHE based: 
red), as well as the detection algorithm output (upper horizontal bar) and 
ground truth (lower horizontal bar) for one representative participant. (b) 
Confusion matrix for the detection algorithm accuracy. (c) The abdomen 
feature (fA) distribution for the current and previous steps together with the 
classifier decision rules. The color of each data point indicates the ground 
truth (walking: black, running: red, run-to-walk: green, walk-to-run: blue). 
The shaded light rectangular regions represent the within threshold boundary 
set in the heuristic rule-based classifier (black and green: walking, red and 
blue: running). If the feature is plotted in the white region, the classifier 
maintains the previously determined gait mode. 

 



  

reduced the metabolic cost of running with respect to No Exo 
and Exo Off by 3.9% (range -1.1 to 8.4%) and 8.2% (range 1.3 
to 15.6%). The net metabolic power of walking and running 
for each trial are reported in Figure 8 and Table I. 

V. DISCUSSION AND CONCLUSION 
This study represents the first demonstration of an 

autonomous wearable robot reducing the energy cost of 
running overground. The net metabolic reduction for running 
was pretty consistent across the all eight subjects, and the Exo 
On condition showed a statistically significant reduction 
compared to both No Exo and Exo Off trials. Previously, our 
group achieved 5.4% (9.1%) metabolic reduction for running 
on a treadmill at 2.5m/s with a tethered soft exosuit compared 
to No Exo (Exo Off) [29]. Considering that this study was with 
an autonomous soft exosuit, the 3.9% reduction we found for 
running is somewhat expected due to the metabolic penalty 
associated with the system weight. 

Another contribution of this paper is that the system is able 
to differentiate between walking and running, delivering a 
different fixed assistance profile for each gait. Our gait 
classification algorithm showed a 99.99% accuracy on 
average over fourteen participants on the treadmill and 
overground, and was robust to various speeds (0.5 – 4m/s), 
slopes (-10 – 20%), treadmill and overground, loaded (13.6 
kg) and unloaded, Exo On and Exo off conditions, and 
different shoe types (military boots and sneakers). 

A surprising finding from this study was that the net 
metabolic reduction for walking showed very high 
inter-subject variability. Some subjects got a relatively large 
metabolic reduction (24.4%) during the Exo On trial compared 
to No Exo condition, but others showed a negative metabolic 
reduction, increase in energy expenditure (-12.3%). Given that 
the same fixed profile [27] of assistance was given to all 
subjects, our findings in this study motivate applying 
human-in-the-loop optimization methods to individualize 
assistance profiles [48-50]. Using a Bayesian Optimization 
and a human-in-the-loop approach, our group has previously 
demonstrated low variability and high metabolic reduction 
(17.4±3.2%) for treadmill walking when comparing normal 
walking to assistance with a tethered version of the soft 
exosuit presented here [50]. 
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