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Predicting overstriding 
with wearable IMUs 
during treadmill and overground 
running
Lauren M. Baker 1, Ali Yawar 2, Daniel E. Lieberman 2 & Conor J. Walsh 1*

Running injuries are prevalent, but their exact mechanisms remain unknown largely due to limited 
real-world biomechanical analysis. Reducing overstriding, the horizontal distance that the foot 
lands ahead of the body, may be relevant to reducing injury risk. Here, we leverage the geometric 
relationship between overstriding and lower extremity sagittal segment angles to demonstrate 
that wearable inertial measurement units (IMUs) can predict overstriding during treadmill and 
overground running in the laboratory. Ten recreational runners matched their strides to a metronome 
to systematically vary overstriding during constant-speed treadmill running and showed similar 
overstriding variation during comfortable-speed overground running. Linear mixed models were used 
to analyze repeated measures of overstriding and sagittal segment angles measured with motion 
capture and IMUs. Sagittal segment angles measured with IMUs explained 95% and 98% of the 
variance in overstriding during treadmill and overground running, respectively. We also found that 
sagittal segment angles measured with IMUs correlated with peak braking force and explained 88% 
and 80% of the variance during treadmill and overground running, respectively. This study highlights 
the potential for IMUs to provide insights into landing and loading patterns over time in real-world 
running environments, and motivates future research on feedback to modify form and prevent injury.

Running injuries are prevalent1, from muscle strain and joint pain to tendinopathies and bone stress fractures2,3. 
Higher injury rates result from increased training volume and frequency4, as the loading thresholds of biological 
tissues exceed capacity and remodeling/repair rates5. Understanding biomechanical risk factors associated with 
these injuries is an open challenge1. While laboratory-based biomechanical evaluations have provided insights 
regarding potential predictors of running-related injuries, the exact mechanisms of these injuries remain largely 
unknown due to small sample sizes, limited prospective studies, and limited ability to analyze biomechanical 
metrics over time outside of a research laboratory. Context-specific gait analysis becomes increasingly important, 
given that running on a laboratory treadmill does not represent real-world running.

Loading likely contributes to injury development. From cadaver studies6, instrumented joint implants7, and 
in vivo bone strain measurements8, loading of biological structures (tendon, muscle, ligament, bone) is known 
to increase microdamage but how to measure this damage remains a challenge. Although the majority of bone 
loading occurs due to muscle contraction, ground reaction force (GRF) has commonly been used as a surrogate 
measure of intrinsic loading in the body; however there is yet to be consensus on which GRF metrics, if any, are 
the most relevant to injury risk9,10.

Despite the challenge of understanding how to best quantify loading, there is clear evidence and consensus 
that running form influences loading11. Running re-training to manage and prevent running-related injuries 
commonly prescribes reducing loading at impact by increasing stride frequency, transitioning from a rear-foot 
to a fore-foot strike, and reducing overstriding12. The term overstriding refers to the horizontal distance that 
the foot lands in front of the body’s center-of-mass (COM)13. While increasing stride frequency has shown to 
decrease loading metrics14, increasing stride frequency has also been associated with increasing metabolic cost13. 
This approach may be more applicable to novice runners with low stride frequencies, but given the coupling 
to metabolic cost, stride frequency tends to be conserved across speeds for more experienced runners15. Speed 
is therefore manipulated by lengthening strides, which can be achieved by either increasing aerial time or by 
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overstriding. Thus, measuring stride frequency alone may have limitations for understanding loading patterns 
and its application for providing feedback on better form. Similarly, measuring only foot strike pattern may not 
provide enough information to understand how a runner is landing and loading. Transitioning from a rear-
foot to a fore-foot landing position has been shown to reduce GRF impact magnitude and rate16 and has been 
postulated to reduce injury rate3, but conflicting evidence exists17. Additionally, fore-foot strikers can still land 
with a more extended leg position at foot contact, similar to rear-foot strikers, increasing the stiffness of the leg 
as well as the braking force required to decelerate the body14.

Compared to studying the impact of stride frequency and foot strike pattern on GRFs or loading, the effect 
of overstriding on these metrics remains less studied. Prior work has shown that limb posture at initial contact, 
which includes measuring overstriding, may influence subsequent loading patterns in stance during running18. 
Further, a previous study varying overstriding during treadmill (TM) running demonstrated a positive correla-
tion between overstriding and braking impulse13, a force metric potentially related to injury. Leveraging the 
geometric relationship between overstriding and lower extremity sagittal segment angles may enable measure-
ment of overstriding outside of the laboratory. Two-dimensional video has been used in outdoor environments to 
track thigh, shank, and foot angles during overground (OG) running19 but this method is limited to the capture 
volume of the camera and requires time intensive post-processing of images and videos.

Using wearable sensors to measure lower extremity angles and quantify overstriding could help to understand 
landing patterns and explain loading behavior during real-world running outside of the laboratory. Inertial 
measurement units (IMUs) are one of the most common wearable sensors for kinematic evaluations, with over 
60 publications in the field of running biomechanics alone20; however to date, no study has evaluated the ability 
of IMUs to measure overstriding. Simplifying the usability of wearable sensors in real-world environments is 
key to understanding the link between biomechanics and running injury risk. Therefore, the objectives of this 
study were to validate that wearable IMUs alone can predict overstriding during TM and OG running and to 
demonstrate that such IMU-derived overstriding metrics correlate with braking force metrics13,21.

Methods
Participants
Ten healthy adult volunteers (5 females; age: 27.9 ± 4.0 yr, height: 1.73 ± 0.9 m, mass: 71.8 ± 15.3 kg, mean ± 
standard deviation) participated in this study. Runners were recruited from a local 5k race (finish time: 25.5 ± 
2.4 min). At the time of study enrollment, participants reported that they currently run for exercise and had no 
musculoskeletal injuries or disorders. The Harvard Longwood Medical Area Institutional Review Board (IRB) 
approved the study, all research was performed in accordance with IRB-approved guidelines and regulations, 
and all participants provided written informed consent.

Testing protocol
This protocol consisted of a treadmill (TM) running portion and an overground (OG) running portion (Fig. 1). 
Participants completed 30-s running trials on an instrumented TM set to 3.0 ms−1 , matching their strides to a 
metronome set to five different stride frequencies (SF): 75, 80, 85, 90 and 95 strides min−1 , in randomized order. 
The last 15 strides were used for analysis. Prior to data collection, participants completed 8 min of warm-up 
TM running at 3.0 ms−1 , which included 3 min at their self-selected SF followed by 1 min at each SF to become 
familiarized with the metronome. Following completion of the TM portion of the protocol, participants took 
a 5-min break and then completed three to four warm-up laps around a 36-m oval track with embedded force 
plates on one straightaway. Data was then recorded during a 5-min continuous OG running trial. During this 
trial, participants were instructed to run at a comfortable self-selected speed and SF. All strides on the force plates 
within 5% of the median speed over the 5-min OG trial were used for analysis (12.6 ± 1.4 strides).

Data collection
We collected data from optical motion capture, force plates, and IMUs for all 10 subjects during both TM and OG 
portions. Reflective markers were placed on anatomical landmarks on the pelvis (left and right iliac crests, left and 
right anterior superior iliac spines, left and right posterior iliac spines, and left and right greater trochanters), left 
leg (medial and lateral epicondyles of the femur, medial and lateral malleoli), and left foot (calcaneus, second and 
fifth metatarsal heads). Marker cluster plates were affixed to the lateral aspects of the left thigh, shank, and foot 
segments and used as tracking markers. An additional marker was placed on the suprasternal notch to measure 
running speed during the OG trial. A standing static trial was collected prior to running data collection. Marker 
data was recorded at 200 Hz using an infrared camera motion capture system (Oqus and Miqus, Qualysis Corp, 
Gothenburg, Sweden). Three-dimensional GRFs were simultaneously recorded at 2000 Hz using an instrumented 
treadmill and ground-embedded force plates (Bertec Corp, Columbus, OH). Foot contact times were identified 
when the vertical GRF exceeded 20 N and were used to determine gait cycle.

Participants wore three wireless IMUs (XSens Dot, Movella Inc, Henderson, NV, weight: 11.2 g, size: 36.3 
mm × 30.4 mm × 10.8 mm) on the left thigh, shank, and foot, respectively, which were rigidly attached to the 
marker cluster plates on these segments. Motion data from the IMUs was recorded at 120 Hz, stored locally 
on each sensor, and downloaded after each session (accelerometer range: ± 16 g, gyroscope range: ± 2000 ◦/s, 
magnetometer range: ± 8 Gauss). A complementary phone app (XSens Dot, Movella Inc, Henderson, NV) was 
used to start and stop IMU data recording.

Data processing
Kinematic and kinetic data from optical motion capture and force plates were analyzed using Visual 3D 
(C-Motion, Germantown, MD). Motion capture marker data were low-pass filtered using a bidirectional, 
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fourth-order Butterworth filter with a cutoff frequency of 10 Hz. Force data were filtered with a 50 Hz low-pass 
filter. Besides the manufacturer’s proprietary onboard filtering algorithms, no additional filters were applied to 
the IMU data.

The 3D orientation data provided by the IMUs was calibrated to a standing pose at the start of the TM trials 
to better compare to the motion capture data. Since IMU orientation outputs are known to be susceptible to 
drift, as error is accumulated around the IMU global gravity axis over time, we implemented a different calibra-
tion procedure for the OG trial. To manage drift over the 5-min trial, the IMU data was calibrated according 
to several assumptions22. We first assumed that the hip, knee, and ankle were perfect hinge joints, such that all 
relevant motion of the thigh, shank, and foot occurred in the sagittal plane during running. Based on IMU sen-
sor placement on the lateral aspect of each segment, we assumed that one of the IMU local coordinate axes was 
aligned with the joint axis and that all relevant segmental rotations were about this axis. At each time frame, we 
redefined the IMU global reference frame with one axis aligned with the joint axis and another pointed against 
gravity. We estimated the rotation between the local and the updated global IMU frames, and defined each seg-
ment’s sagittal angle as the Euler angle corresponding to rotation about the joint axis.

Across participants, the IMUs started recording after the motion capture data, with a range of delays from 
90 to 180 ms. IMU data was synchronized to motion capture data by maximizing the cross-correlation between 
the segment angles during a calibration maneuver performed before each trial (hard step with the left foot fol-
lowed by a forward and backward swing of the left leg). Time-aligned IMU and motion capture data were used 
for all analyses.

Metric definitions
Several metrics were analyzed in this study (Fig. 2). Overstriding refers to the horizontal distance between the 
greater trochanter marker and the lateral malleolus marker. To compare across participants, this distance was 
normalized by leg length. θThigh,FC , θShank,FC , and θFoot,FC refer to the sagittal thigh, shank, and foot angles at 
foot contact (FC) derived from Visual 3D with respect to the laboratory global frame. Sagittal thigh and shank 
angles from motion capture are referenced to vertical, with a positive θThigh,FC or θShank,FC indicating that the 
segment is in front of its proximal endpoint. Sagittal foot angle from motion capture is referenced to horizontal 
(e.g. the floor), with positive θFoot,FC indicating a rear-foot strike and negative θFoot,FC indicating a fore-foot strike. 
θThigh IMU,FC , θShank IMU,FC , and θFoot IMU,FC refer to the sagittal thigh, shank, and foot angles at FC derived from 
IMUs. θThigh IMU,FC and θShank IMU,FC are measured with respect to vertical, and θFoot IMU,FC is measured with 
respect to horizontal. Peak braking force (PBF) refers to the peak of the posterior GRF.

Statistical analysis
We compared sagittal segment angles computed with IMU orientations to sagittal segment angles from motion 
capture at foot contact using root mean square error (RMSE). Linear mixed model (LMM) regressions were 

Figure 1.   Schematic showing placement of motion capture markers and inertial measurement units (IMUs) 
worn during running on (a) an instrumented treadmill (TM) and (b) an overground (OG) laboratory track 
with ground-embedded force plates. Sagittal segment angles were measured from motion capture and IMUs, 
and ground reaction forces were collected from force plates. Participants completed TM running at 3 ms−1 and 
matched their strides to a prescribed stride frequency (SF) using a metronome. Participants ran at a self-selected 
comfortable speed and SF during the OG portion of the protocol. (c) Timeline of experimental protocol. Data 
was recorded during the five 30-s SF-randomized TM trials and one 5-min OG trial.
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performed to quantify the relationship between sagittal segment angles at foot contact and overstriding as well 
as sagittal segment angles at foot contact and PBF during TM and OG running (Table 1).

As overstriding is a global distance measurement, the sum of segment lengths multiplied by the sine of sagittal 
segment angles would be required to measure overstriding directly. While segment lengths are easily measured 
using motion capture markers placed at proximal and distal endpoints, this study sought to use IMUs alone to 
predict overstriding. Therefore we included only sagittal segment angles as predictors in the LMMs.

LMM regressions were chosen to account for repeated measures on the same individuals13. These models are 
known as “mixed” models because they contain both fixed effects and random effects, with the latter accounting 
for individual differences in response. LMM regressions follow the form: Yi = Xiβ + Ziαi + ǫi , where Yi is the 
dependent or response variable, Xi is the independent or predictor variable, β is the fixed effect coefficient, Zi is 

Figure 2.   Illustration of data processing and metric definitions from exemplary time-aligned data for a single 
participant during a treadmill running trial. θThigh,FC (green) and θShank,FC (blue) represent the sagittal thigh 
and shank angles relative to vertical at foot contact (FC), where a positive value indicates that the segment is in 
front of its proximal endpoint. θFoot IMU,FC (orange) represents the sagittal foot angle relative to the floor at FC, 
where a positive value indicates a rear-foot strike and a negative value indicates a fore-foot strike. Overstriding 
(OS) is the horizontal distance between the greater trochanter and the lateral malleolus marker at FC and 
is geometrically related to θThigh,FC and θShank,FC . Peak braking force (PBF) is computed from the anterior-
posterior ground reaction force (GRFAP ) measured by force plates, shown in red. In the time series plots, shaded 
gray vertical lines represent FC events. Solid lines represent sagittal segment angles measured from motion 
capture marker data (Mocap), and black dashed lines represent sagittal segment angles measured from inertial 
measurement units (IMU). We observed high alignment between the synced Mocap and IMU data.

Table 1.   Linear mixed model (LMM) regressions for various dependent variables and fixed effects (model 
predictors) across treadmill (TM) and overground (OG) running conditions. PBF; peak braking force; 
θThigh,FC , θShank,FC , θFoot,FC ; sagittal thigh, shank, and foot angles at foot contact; IMU; inertial measurement 
unit.

LMM Condition Dependent variable Fixed effects

1A TM Overstriding θThigh,FC, θShank,FC, θFoot,FC

2A OG Overstriding θThigh,FC, θShank,FC, θFoot,FC

3A TM PBF θThigh,FC, θShank,FC, θFoot,FC

4A OG PBF θThigh,FC, θShank,FC, θFoot,FC

1B TM Overstriding θThigh IMU,FC, θShank IMU,FC, θFoot IMU,FC

2B OG Overstriding θThigh IMU,FC, θShank IMU,FC, θFoot IMU,FC

3B TM PBF θThigh IMU,FC, θShank IMU,FC, θFoot IMU,FC

4B OG PBF θThigh IMU,FC, θShank IMU,FC, θFoot IMU,FC
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the grouping variable, αi is the random effect coefficient, ǫi is an error term, and i = 1, ...,N . Participant identifier 
was the grouping variable in all models, and N was the total number of strides used in the analysis.

All model inputs were standardized as Z scores and fit using the restricted maximum likelihood (REML) 
estimator in R’s lme4 package. Each LMM was fit as a random-intercept model, so participant-specific inter-
cepts were identified. For the fixed effects, we reported coefficients, 95% confidence intervals (CI), and p values. 
Significance was set at p < 0.05. For the random effect, we reported the intraclass correlation coefficient (ICC), 
which quantifies the proportion of variance explained by the participant identifier. Marginal R2 and conditional 
R
2 values were calculated to assess model fit. Marginal R2 accounts for only the variance of the fixed effects, while 

conditional R2 incorporates variance of both fixed and random effects23.

Results
Participants varied overstriding during TM and OG running
During the TM portion of the protocol, participants ran at a constant speed of 3.0 ms−1 and were able to match 
their strides to the prescribed stride frequencies (SF) (Supplementary Table 1). As SF increased, both overstrid-
ing and PBF decreased (Fig. 3). The mean range of overstriding for each participant throughout all TM trials 
was 5.9 ± 1.3 cm (mean ± standard deviation). The mean range of PBF was 0.18 ± 0.05 BW. While the TM tri-
als enabled us to systematically modulate overstriding using a previously published methodology13, this work 
observed stride-to-stride variability in overstriding during OG running at a self-selected comfortable speed (2.9 
± 0.27 ms−1 ) and SF (81 ± 3.5 strides min −1 ). The mean range of overstriding throughout the OG trial for each 
participant was 3.8 ± 1.3 cm, and 0.09 ± 0.02 BW for PBF. Overstriding varied less during OG running, which was 
expected as neither stride frequency, stride length, nor speed was modulated during this portion of the protocol.

We also inspected the ranges of sagittal segment angles at foot contact during TM and OG running. Partici-
pants modulated thigh angle by 6.0 ± 1.7◦ , shank angle by 7.2 ± 1.4◦ , and foot angle by 8.9 ± 2.1◦ during TM 
running. In general as SF increased, sagittal segment angles at foot contact decreased (Supplementary Table 1). 
During OG running, participants modulated thigh angle by 3.6 ± 1.6◦ , shank angle by 4.2 ± 1.4◦ , and foot angle 
by 4.7 ± 2.1◦ . The range of sagittal segment angles during the OG trial was lower than that of the TM trials. 
Given the geometric relationship between sagittal segment angles and overstriding, it aligns that the range of 
both overstriding and sagittal segment angles were lower in OG running than in TM running.

Sagittal segment angles from motion capture correlated with overstriding during TM and OG 
running
Thigh and shank angle at foot contact significantly contributed to a model of overstriding during TM running (p: 
<0.001 for both) but not foot angle (p: 0.054) (Table 2, LMM 1A). Marginal and conditional R2 were 83.0% and 
98.8%, respectively (Table 2, LMM 1A). During OG running, thigh and shank angle at foot contact significantly 
contributed to a model of overstriding (p: <0.001 for both) but not foot angle (p: 0.202) (Table 2, LMM 2A). 
Marginal and conditional R2 were 86.4% and 99.4%, respectively (Table 2, LMM 2A).

Thigh, shank, and foot angle at foot contact correlated with PBF during TM and OG running. All sagittal 
segment angles measured from motion capture significantly contributed to a model of PBF during TM running 
( θThigh,FC , p: <0.001; θShank,FC , p: <0.001; θFoot,FC , p: 0.043) (Table 2, LMM 3A) and during OG running ( θThigh,FC , 
p: <0.001; θShank,FC , p: <0.001; θFoot,FC , p: 0.018) (Table 2, LMM 4A). For TM running, marginal and conditional 
R
2 were 46.2% and 88.3%, respectively (Table 2, LMM 3A). For OG running, marginal and conditional R2 were 

40.2% and 92.0%, respectively (Table 2, LMM 4A).

Figure 3.   Box and whisker plots showing the distribution of overstriding and peak braking force (PBF) 
measured at each prescribed stride frequency (SF) during treadmill running. Each box extends from the first to 
third quartile of the data, with a horizontal line at the median. The whiskers extend from the box to 1.5 times the 
interquartile range.
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IMUs accurately measured sagittal segment angles during TM and OG running
RMSE between sagittal segment angles measured by motion capture and by IMUs at foot contact during TM 
running was 2.99◦ , 4.75◦ , and 4.33◦ for thigh, shank, and foot angles, respectively. During OG running, RMSE 
was 3.45◦ , 3.26◦ , and 4.96◦ for thigh, shank, and foot angle, respectively, at foot contact.

Sagittal segment angles from IMUs correlated with overstriding during TM and OG running
Thigh, shank, and foot angle measured from IMUs at foot contact significantly contributed to a model of over-
striding during TM running (p: <0.001 for all) (Table 2, LMM 1B). Marginal and conditional R2 were 55.7% and 
94.7%, respectively (Table 2, LMM 1B). During OG running, thigh and shank angle measured from IMUs at 
foot contact significantly contributed to overstriding (p: <0.001 for both) but not foot angle (p: 0.084) (Table 2, 
LMM 2B). Marginal and conditional R2 were 61.8% and 98.2% (Table 2, LMM 2B).

Thigh, shank, and foot angle measured from IMUs at foot contact correlated with PBF during TM and OG 
running. All sagittal segment angles measured from IMUs significantly contributed to a model of PBF during TM 
running (p: <0.001 for θThigh,FC , θShank,FC , and θFoot,FC ,) (Table 2, LMM 3B) and during OG running ( θThigh,FC , 
p: <0.001; θShank,FC , p: <0.001; θFoot,FC , p: 0.020) (Table 2, LMM 4B). For TM running, marginal and conditional 
R
2 were 42.9% and 87.7%, respectively (Table 2, LMM 3B). For OG running, marginal and conditional R2 were 

35.6% and 79.8%, respectively (Table 2, LMM 4B).

Discussion
The purpose of this study was to demonstrate that wearable IMUs can predict overstriding during running 
and then to investigate if such IMU-derived overstriding metrics correlate with braking force metrics. Before 
using IMU data, we first confirmed that overstriding can be represented by lower extremity sagittal segment 
angles measured from motion capture, as geometrically expected, during both TM and OG running. Compar-
ing the marginal and conditional R2 values of the TM and OG models enables us to understand the predictive 
performance of the sagittal segment angles for overstriding measurement. We found that θThigh,FC and θShank,FC 
correlated with overstriding during TM running, explaining 83% and 99% of the marginal and conditional vari-
ance, respectively, and during OG running, explaining 86% and 99% of the marginal and conditional variance, 
respectively. θFoot,FC did not significantly contribute to these models (Supplementary Fig. 1). From the marginal 
variance explained in this dataset, we expect that thigh and shank angles measured from additional participants 
would show good predictive performance for overstriding.

After demonstrating that sagittal segment angles measured from motion capture are correlated with over-
striding, we showed that IMUs can be used to measure these angles. The error between motion capture and IMU 
measurement for sagittal segment angles at foot contact was less than 5 ◦ for all segments for both TM and OG 
running, which is similar in magnitude to what has previously been reported24. We therefore considered the 
IMU sagittal segment angles to be reasonable. To demonstrate the potential for assessing overstriding outside 
of a laboratory environment, we showed that IMUs worn on the thigh and shank can predict overstriding dur-
ing TM running, explaining 56% and 95% of the marginal and conditional variance, respectively, and during 
OG running, explaining 62% and 98% of the marginal and conditional variance, respectively. These results are 

Table 2.   Linear mixed model (LMM) results. In each LMM, sagittal segment angles at foot contact (FC) are 
the fixed effects, participant identifier is the random effect, and either overstriding (OS) or peak braking force 
(PBF) is the dependent variable. Results are shown for data collected during treadmill (TM) and overground 
(OG) running. The top row (A) reports sagittal segment angles measured from motion capture, denoted as 
θThigh,FC , θShank,FC , and θFoot,FC .. The bottom row (B) reports sagittal segment angles measured by IMUs, 
denoted as θThigh IMU,FC , θShank IMU,FC , and θFoot IMU,FC . P values < 0.05 are in bold.

Dep. Var.

(1) (2) (3) (4)

OS TM OS OG PBF TM PBF OG

 Fixed effects coef. CI p  val. coef. CI p  val. coef. CI p  val. coef. CI p  val.

(A)

θThigh,FC 0.61 [ 0.58, 0.63] <0.001 0.53 [ 0.48, 0.58] <0.001 0.68 [ 0.57, 0.80] <0.001 0.70 [ 0.40, 0.63] <0.001

θShank,FC 0.63 [ 0.61, 0.65] <0.001 0.56 [ 0.52, 0.59] <0.001 0.69 [ 0.60, 0.77] <0.001 0.79 [ 0.50, 0.70] <0.001

θFoot,FC 0.05 [-0.00, 0.11] 0.054 0.08 [-0.04, 0.19] 0.202 -0.25 [-0.50,-0.01] 0.043 -0.77 [-1.02,-0.26] 0.018

ICC 0.930 0.960 0.830 0.870

Marginal R2 0.830 0.864 0.462 0.402

Conditional R2 0.988 0.994 0.883 0.920

(B)

θThigh IMU,FC 0.52 [ 0.48, 0.57] <0.001 0.29 [ 0.20, 0.37] <0.001 0.69 [ 0.59, 0.79] <0.001 0.35 [ 0.24, 0.46] <0.001

θShank IMU,FC 0.39 [ 0.37, 0.42] <0.001 0.63 [ 0.52, 0.75] <0.001 0.48 [ 0.42, 0.54] <0.001 0.36 [ 0.26, 0.46] <0.001

θFoot IMU,FC 0.30 [ 0.21, 0.39] <0.001 0.24 [-0.03, 0.52] 0.084 0.48 [ 0.27, 0.69] <0.001 -0.68 [-1.24,-0.11] 0.020

ICC 0.880 0.950 0.780 0.690

Marginal R2 0.557 0.618 0.429 0.356

Conditional R2 0.947 0.982 0.877 0.798
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lower than the marginal variance explained by motion capture angles (83% TM and 86% OG). Based on the 
magnitude of the measurement errors between motion capture and IMU sagittal segment angles during TM 
and OG running, we expect that the models using IMU angles would have similar but worse performance to 
those using motion capture.

To further highlight the potential utility of wearable sensors that measure sagittal segment angles, we evalu-
ated the relationship between these angles and braking force, a commonly reported metric in running injury 
literature. We leveraged the established relationship between overstriding and braking during TM running13 
to understand how sagittal segment angles first contribute to overstriding and then subsequently to PBF. We 
found that sagittal segment angles measured from IMUs correlated with PBF during both TM and OG running. 
θThigh IMU,FC , θShank IMU,FC , and θFoot IMU,FC significantly contributed to a model of PBF, explaining 43% and 88% 
of the marginal and conditional variance, respectively during TM running and 36% and 80% of the marginal 
and conditional variance, respectively during OG running. These results are similar to the marginal variance 
explained by motion capture sagittal segment angles (46% TM and 40% OG). These results are also comparable 
to recent studies which explained 52% of the variance in cumulative braking impulse during TM running using 
commercial wearable sensors on the wrist and chest25.

While neither θFoot,FC nor θFoot IMU,FC significantly contributed to overstriding during OG running, this seg-
ment angle did significantly contribute to PBF. The landing angle of the foot may therefore provide additional 
information to explain braking force, after accounting for overstriding measured by thigh and shank sagittal 
angles. This finding is similar to a previous study that showed both distance from COM to heel (overstriding) 
and foot strike angle are kinematic predictors of PBF, explaining 57% of the variance during TM running along 
with self-selected speed and stride length as predictors21. A sub-analysis of our OG data showed that a model 
with only θThigh IMU,FC and θShank IMU,FC as predictors explained 43% of the marginal variance of PBF (compared 
to 36% with the addition of θFoot IMU,FC ), while a model with θShank IMU,FC as the only predictor still explained 
26% of the marginal variance.

Understanding the relative contribution of each segment to overstriding per individual across multiple speeds 
and slopes would be useful to determine the minimal sensor set required to achieve biomechanically-relevant, 
robust information on running form. When considering a minimal sensor set, it is helpful to target sensor 
placement based on which metrics are most desired. For example, using thigh and shank IMUs have been used 
to predict knee stiffness26, a metric found to be related to injury in a prospective study27, while also providing 
information about overstriding and braking force. Runners with tibial stress fractures were found to have higher 
peak tibial acceleration values compared to uninjured runners28, which can be measured with an IMU on the 
shank29, and an additional IMU on the thigh could help elucidate the role of the knee in shock attenuation and 
injury, especially over a prolonged run30.

While this study focused on measuring overstriding with IMUs, recent prospective studies have identified 
other spatiotemporal and kinematic metrics related to bone stress injuries, namely step rate31, vertical excursion31, 
and duty cycle32,33 (contact time divided by stride time). Duty cycle has previously been demonstrated to predict 
PBF, explaining 43% of the variance in a cohort of recreational runners34. A sub-analysis of our data showed that 
duty cycle, θThigh IMU,FC , and θShank IMU,FC significantly contribute to a model of PBF and can explain 59% of the 
marginal variance during OG running (compared to 43% with only θThigh IMU,FC and θShank IMU,FC as predictors 
and 26% with only duty cycle as a predictor). This study ultimately evaluated the relationship between landing 
position and braking during running, with the assumption that braking is relevant to injury35 and therefore 
landing position (and degree of overstriding) is also relevant to injury. Recent systematic reviews show a lack of 
consensus on the relationship between braking force and injury36–38, but given that bone is susceptible to failure 
under shear stress39, monitoring braking force is likely still relevant to injury40. In this study, we measured peak 
braking force, but other metrics exist, i.e. impulse, time to peak, rate, etc. Developing models to estimate shear 
loading on the tibia and foot, similarly to previous models for compressive loading41, could provide more insight 
into cumulative loading and bone or tissue damage occurring during running.

In addition to monitoring running form for injury prevention, measuring overstriding and braking using 
wearable sensors may have applications in running economy42 and performance19. Deceleration of the COM at 
impact may influence metabolic cost42, indicating that the length of the braking phase may be important to overall 
running efficiency. However, a study analyzing video-based kinematics and race performance during an elite 
marathon did not find any differences in overstriding between the final laps19. Only two strides per participant 
could be compared due to limitations in video capture volume of the race course, so using wearable sensors in 
similar future studies of fatigue and performance could enable a more continuous measurement of overstriding.

Interestingly this same study analyzing race-based kinematics did find differences between genders, with 
women having greater relative “foot ahead” distance. Although our dataset is not large enough to compare 
gender groups, we saw that shorter leg lengths resulted in greater overstriding and greater braking, and women 
tend to have shorter legs compared to the men in this study (0.86 m vs. 0.92 m). This relationship is expected at 
constant speed TM running but interestingly during OG comfortable speed running, those with shorter legs still 
exhibited greater PBF. This finding is in agreement with a previous study that found leg length to be a significant 
contributor to a model of PBF during OG running43. More participants would be needed to study gender differ-
ences in overstriding and loading patterns.

There were several limitations in this study. This study was conducted in a controlled laboratory environment 
on level ground to validate IMU-based measurements against an accepted ground truth; however, further study 
is needed to demonstrate similar results in less controlled spaces, including variable speeds, slopes, and terrains. 
We found that the IMU errors are not consistent across segments or stride frequencies (Supplementary Table 1), 
suggesting sensor noise may be influenced by running parameters. Moreover, the sensitivity of these results to 
IMU placement across longer durations or across days warrants additional study to provide repeatable, reliable 
measurements of overstriding. Participants were instructed to wear their typical running shoes to eliminate 
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confounding factors from comfort. However, differences in shoe stiffness may introduce errors or inconsisten-
cies in the braking force measurements44. In this laboratory evaluation, we used force plates to segment the gait 
cycle. Detecting foot contact with IMUs has been demonstrated during running45 and implementing this gait 
segmentation would be necessary for outdoor investigations of overstriding.

This study measured only 10 recreational runners, and given that overstriding can occur in both fore-foot and 
rear-foot strikers, we did not restrict our inclusion to participants with a specific foot strike pattern. During TM 
and OG running, we found that those who landed with “extreme” angles, i.e. greater than 10° of plantarflexion 
or greater than 10° of dorsiflexion, exhibited greater overstriding distances than those who landed with a more 
neutral foot-to-floor angle. A recent study using an unsupervised learning approach to cluster biomechanical 
data found that collegiate runners with more than 10° of plantarflexion at landing had a higher incidence of bone 
stress injuries compared to other less-plantarflexed groups33. While overstriding was not explicitly reported, we 
could posit from our results that the excessively plantarflexed group was overstriding more than the groups who 
landed closer to neutral. More participants representing the continuum of angles would be needed before we 
can draw conclusions about the impact of foot strike pattern on overstriding and on injury risk3. Further, there 
is currently no consensus on what qualifies as excessive overstriding, so more real-world tracking with wearable 
sensors and longitudinal studies are needed.

A next step is to use IMUs to predict overstriding in natural running environments. Managing noise and 
drift in IMU measurements will be necessary for long term use, and practices to improve accuracy have begun 
to be established46,47. Some considerations for measurement accuracy include developing calibration routines 
to minimize effects of IMU placement or movement due to soft tissue artifacts. In addition to focusing on sen-
sor signal robustness, minimizing the number of sensors needed to provide informative data is important to 
enable larger scale implementation and data collection, for example within a collegiate cross-country team or 
community run club. Future work could consider using biofeedback to reduce overstriding and subsequently 
braking force. Previous work has demonstrated the potential for biofeedback in reducing tibial shock during 
TM running using visual feedback48 and during OG running using music49.

While overstriding is correlated with PBF, developing estimates of anterior-posterior GRF for ground-truth 
comparison in environments outside of the laboratory is important to better understand loading during long 
distance running. Likely sensor fusion with pressure insoles and individualized machine learning approaches 
will be needed, in addition to kinematic measures from IMUs50. This multi-modal approach has shown promise 
in estimating vertical51 and 3D52 GRF metrics and cumulative tibial loading53. By establishing which metrics are 
currently most relevant to injury and which wearable sensors can be used to yield these data, we can begin to 
conduct more sensorized prospective injury studies and gain more insights into the mechanisms behind run-
ning injury development.

Data availability
The datasets used and analyzed during this study are available from the corresponding author on reasonable 
request.
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