Soft Robotic Glove for Hand Rehabilitation and Task Specific Training


P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O'Donnell, and C. J. Walsh, “Soft Robotic Glove for Hand Rehabilitation and Task Specific Training,” in IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington, USA, 2015, pp. 2913-2919.

Date Presented:

26-30 May 2015


This paper presents advancements in the design of a portable, soft robotic glove for individuals with functional grasp pathologies. The robotic glove leverages soft material actuator technology to safely distribute forces along the length of the finger and provide active flexion and passive extension. These actuators consist of molded elastomeric bladders with anisotropic fiber reinforcements that produce specific bending, twisting, and extending trajectories upon fluid pressurization. In particular, we present a method for customizing a soft actuator to a wearer's biomechanics and demonstrate in a motion capture system that the ranges of motion (ROM) of the two are nearly equivalent. The active ROM of the glove is further evaluated using the Kapandji test. Lastly, in a case study, we present preliminary results of a patient with very weak hand strength performing a timed Box-and-Block test with and without the soft robotic glove.

Publisher's Version

Last updated on 05/16/2016