Publications by Year: 2017

2017
M. B. Yandell, B. T. Quinlivan, D. Popov, C. Walsh, and K. E. Zelik, “Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 40, 2017. Publisher's VersionAbstract

 

Background
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.

Methods
Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power).

Results
We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics.

Conclusions
Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

 

PDF
M. A. Horvath, et al., “An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection from the Failing Right Ventricle,” Annals of Biomedical Engineering, pp. 1-12, 2017. Publisher's VersionAbstract

We introduce an implantable intracardiac soft robotic right ventricular ejection device (RVED) for dynamic approximation of the right ventricular (RV) free wall and the interventricular septum (IVS) in synchrony with the cardiac cycle to augment blood ejection in right heart failure (RHF). The RVED is designed for safe and effective intracardiac operation and consists of an anchoring system deployed across the IVS, an RV free wall anchor, and a pneumatic artificial muscle linear actuator that spans the RV chamber between the two anchors. Using a ventricular simulator and a custom controller, we characterized ventricular volume ejection, linear approximation against different loads and the effect of varying device actuation periods on volume ejection. The RVED was then tested in vivo in adult pigs (n = 5). First, we successfully deployed the device into the beating heart under 3D echocardiography guidance (n = 4). Next, we performed a feasibility study to evaluate the device's ability to augment RV ejection in an experimental model of RHF (n = 1). RVED actuation augmented RV ejection during RHF; while further chronic animal studies will provide details about the efficacy of this support device. These results demonstrate successful design and implementation of the RVED and its deployment into the beating heart. This soft robotic ejection device has potential to serve as a rapidly deployable system for mechanical circulatory assistance in RHF.

PDF
B. R. Seo, C. Payne, B. Kwee, C. J. Walsh, and D. J. Mooney, “Immuno-regulatory Roles of Cyclic Loading that Promotes Skeletal Muscle Regeneration,” in Biomedical Engineering Society (BMES) Annual Meeting, Phoenix, AZ, October 11-14, 2017. PDF
Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit
B. T. Quinlivan, et al., “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit,” Science Robotics, vol. 2, no. 2, 2017. Publisher's VersionAbstract

When defining requirements for any wearable robot for walking assistance, it is important to maximize the user’s metabolic benefit resulting from the exosuit assistance while limiting the metabolic penalty of carrying the system’s mass. Thus, the aim of this study was to isolate and characterize the relationship between assistance magnitude and the metabolic cost of walking while also examining changes to the wearer’s underlying gait mechanics. The study was performed with a tethered multiarticular soft exosuit during normal walking, where assistance was directly applied at the ankle joint and indirectly at the hip due to a textile architecture. The exosuit controller was designed such that the delivered torque profile at the ankle joint approximated that of the biological torque during normal walking. Seven participants walked on a treadmill at 1.5 meters per second under one unpowered and four powered conditions, where the peak moment applied at the ankle joint was varied from about 10 to 38% of biological ankle moment (equivalent to an applied force of 18.7 to 75.0% of body weight). Results showed that, with increasing exosuit assistance, net metabolic rate continually decreased within the tested range. When maximum assistance was applied, the metabolic rate of walking was reduced by 22.83 ± 3.17% relative to the powered-off condition (mean ± SEM).

PDF
F. Connolly, C. J. Walsh, and K. Bertoldi, “Automatic design of fiber-reinforced soft actuators for trajectory matching,” Proceedings of the National Academy of Sciences (PNAS), vol. 114, no. 1, pp. 51-56, 2017. Publisher's VersionAbstract

Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.

PDF
T. Ranzani, S. Russo, F. Schwab, C. J. Walsh, and R. J. Wood, “Deployable stabilization mechanisms for endoscopic procedures,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017.
J. B. Gafford, R. J. Wood, and C. J. Walsh, “A high-force, high-stroke distal robotic add-on for endoscopy,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017.
Soft robotic sleeve supports heart function
E. T. Roche, et al., “Soft robotic sleeve supports heart function,” Science Translational Medicine, vol. 9, no. 373, 2017. Publisher's VersionAbstract

There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heart muscle. We present a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure.

PDF
D. P. Holland, et al., “The Soft Robotics Toolkit: Strategies for Overcoming Obstacles to the Wide Dissemination of Soft-Robotic Hardware,” IEEE Robotics and Automation Magazine, Special Issue on Open Source and Widely Disseminated Robot Hardware, vol. 24, no. 1, pp. 57-64, 2017. Publisher's VersionAbstract

The Soft Robotics Toolkit (SRT) is an open-access website containing detailed information about the design, fabrication, and characterization of soft-robotic components and systems (Figure 1). Soft robotics is a growing field of research concerned with the development of electromechanical technology composed of compliant materials or structures. The SRT website hosts design files, multimedia fabrication instructions, and software tutorials submitted by an international community of soft-robotics researchers and designers. In this article, we describe the development of the SRT and some challenges in developing widely disseminated robotic-hardware resources. Our attempts to overcome these challenges in the development of the toolkit are discussed by focusing on strategies that have been used to engage participants ranging from K-12 grade students to robotics research groups. A series of design competitions encouraged people to use and contribute to the toolkit. New fabrication methods requiring only low-cost and accessible materials were developed to lower the entry barriers to soft robotics and instructional materials and outreach activities were used to engage new audiences. We hope that our experiences in developing and scaling the toolkit may serve as guidance for other open robotic-hardware projects.

PDF