Soft Exosuits

2017
P. Malcolm, et al., “Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 72, 2017. Publisher's VersionAbstract

Background
Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions.

Methods
Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment.

Results
Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions.

Conclusions
The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.

PDF
A. Atalay, et al., “Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking,” Advanced Materials Technologies, 2017. Publisher's VersionAbstract
This paper presents design and batch manufacturing of a highly stretchable textile-silicone capacitive sensor to be used in human articulation detection, soft robotics, and exoskeletons. The proposed sensor is made of conductive knit fabric as electrode and silicone elastomer as dielectric. The batch manufacturing technology enables production of large sensor mat and arbitrary shaping of sensors, which is precisely achieved via laser cutting of the sensor mat. Individual capacitive sensors exhibit high linearity, low hysteresis, and a gauge factor of 1.23. Compliant, low-profile, and robust electrical connections are established by fusing filaments of micro coaxial cable to conductive fabric electrodes of the sensor with thermoplastic film. The capacitive sensors are integrated on a reconstructed glove for monitoring finger motions.
PDF Supplementary Material
L. N. Awad, et al., “Soft Wearable Robots Can Increase Walking Speed and Distance After Stroke: Proof of Concept,” in Combined Sections Meeting of the American Physical Therapy Association (APTA CSM), San Antonio, TX, USA, February 15-18, 2017.
P. Malcolm, et al., “Varying negative work assistance at the ankle with a soft exosuit during loaded walking,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 62, 2017. Publisher's VersionAbstract

Background
Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit.

Methods
We tested eight participants during walking at 1.5 ms−1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg−1 and a fixed rate of positive work assistance of 0.19 W kg−1.

Results
All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment.

Conclusions
The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance.

PDF
O. Araromi, C. J. Walsh, and R. J. Wood, “Hybrid carbon fiber-textile compliant force sensors for high-load sensing in soft exosuits,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 24-28, 2017.
G. Lee, Y. Ding, I. B. Galiana, N. Karavas, A. Eckert-Erdheim, and C. J. Walsh, “Improved assistance profile tracking for walking and jogging soft exosuits with off-board actuation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 24-28, 2017.
M. B. Yandell, B. T. Quinlivan, D. Popov, C. J. Walsh, and K. E. Zelik, “Human-Exosuit Interfaces Absorb and Return Energy, Reshaping Exosuit to Human Power Flow,” in 41st Annual Meeting of the American Society of Biomechanics (ASB), Boulder, CO, August 8-11, 2017.
P. Malcolm, et al., “Effect of slope and speed on kinetics of jogging with a backpack,” in 41st Annual Meeting of the American Society of Biomechanics (ASB), Boulder, CO, August 8-11, 2017.
W. Bowers, et al., “Effect of powered exosuit training on impulse during gait,” in 41st Annual Meeting of the American Society of Biomechanics (ASB), Boulder, CO, August 8-11, 2017.
L. Sloot, et al., “Unilateral ankle assisting soft robotic exosuit can improve post-stroke gait during overground walking,” in 41st Annual Meeting of the American Society of Biomechanics (ASB), Boulder, CO, August 8-11, 2017.
P. Kudzia, et al., “A uni-lateral soft exosuit for the paretic ankle can reduce gait compensations in patients post-stroke,” in 41st Annual Meeting of the American Society of Biomechanics (ASB), Boulder, CO, August 8-11, 2017.
M. B. Yandell, B. T. Quinlivan, D. Popov, C. J. Walsh, and K. E. Zelik, “Human-Exosuit Interfaces Absorb and Return Energy, Reshaping Exosuit to Human Power Flow,” in XXVI Congress of the International Society of Biomechanics (ISB), Brisbane, Australia, July 23-27, 2017.
G. Lee, et al., “Reducing the metabolic cost of running with a tethered soft exosuit,” Science Robotics, vol. 2, no. 6, pp. eaan6708, 2017. Publisher's VersionAbstract
Assisting hip extension with a tethered exosuit and a simulation-optimized force profile reduces metabolic cost of running.
PDF
M. B. Yandell, B. T. Quinlivan, D. Popov, C. Walsh, and K. E. Zelik, “Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 40, 2017. Publisher's VersionAbstract

 

Background
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.

Methods
Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power).

Results
We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics.

Conclusions
Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

 

PDF
Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit
B. T. Quinlivan, et al., “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit,” Science Robotics, vol. 2, no. 2, pp. eaah4416, 2017. Publisher's VersionAbstract

When defining requirements for any wearable robot for walking assistance, it is important to maximize the user’s metabolic benefit resulting from the exosuit assistance while limiting the metabolic penalty of carrying the system’s mass. Thus, the aim of this study was to isolate and characterize the relationship between assistance magnitude and the metabolic cost of walking while also examining changes to the wearer’s underlying gait mechanics. The study was performed with a tethered multiarticular soft exosuit during normal walking, where assistance was directly applied at the ankle joint and indirectly at the hip due to a textile architecture. The exosuit controller was designed such that the delivered torque profile at the ankle joint approximated that of the biological torque during normal walking. Seven participants walked on a treadmill at 1.5 meters per second under one unpowered and four powered conditions, where the peak moment applied at the ankle joint was varied from about 10 to 38% of biological ankle moment (equivalent to an applied force of 18.7 to 75.0% of body weight). Results showed that, with increasing exosuit assistance, net metabolic rate continually decreased within the tested range. When maximum assistance was applied, the metabolic rate of walking was reduced by 22.83 ± 3.17% relative to the powered-off condition (mean ± SEM).

PDF
2016
E. Rogers, P. Polygerinos, S. Allen, F. A. Panizzolo, C. J. Walsh, and D. P. Holland, “A Quasi-Passive Knee Exoskeleton to Assist During Descent,” in International Symposium on Wearable Robotics (WeRob) 2016, La Granja, Spain, 2016. PDF
Y. Ding, et al., “Effect of timing of hip extension assistance during loaded walking with a soft exosuit,” Journal of NeuroEngineering and Rehabilitation, vol. 2016, no. 13, pp. 87, 2016. Publisher's VersionAbstract

 

Background
Recent advances in wearable robotic devices have demonstrated the ability to reduce the metabolic cost of walking by assisting the ankle joint. To achieve greater gains in the future it will be important to determine optimal actuation parameters and explore the effect of assisting other joints. The aim of the present work is to investigate how the timing of hip extension assistance affects the positive mechanical power delivered by an exosuit and its effect on biological joint power and metabolic cost during loaded walking. In this study, we evaluated 4 different hip assistive profiles with different actuation timings: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP).

Methods
Eight healthy participants walked on a treadmill at a constant speed of 1.5 m · s-1 while carrying a 23 kg backpack load. We tested five different conditions: four with the assistive profiles described above and one unpowered condition where no assistance was provided. We evaluated participants’ lower limb kinetics, kinematics, metabolic cost and muscle activation.

Results
The variation of timing in the hip extension assistance resulted in a different amount of mechanical power delivered to the wearer across conditions; with the ESLP condition providing a significantly higher amount of positive mechanical power (0.219 ± 0.006 W · kg-1) with respect to the other powered conditions. Biological joint power was significantly reduced at the hip (ESEP and ESLP) and at the knee (ESEP, ESLP and LSEP) with respect to the unpowered condition. Further, all assistive profiles significantly reduced the metabolic cost of walking compared to the unpowered condition by 5.7 ± 1.5 %, 8.5 ± 0.9 %, 6.3 ± 1.4 % and 7.1 ± 1.9 % (mean ± SE for ESEP, ESLP, LSEP, LSLP, respectively).

Conclusions
The highest positive mechanical power delivered by the soft exosuit was reported in the ESLP condition, which showed also a significant reduction in both biological hip and knee joint power. Further, the ESLP condition had the highest average metabolic reduction among the powered conditions. Future work on autonomous hip exoskeletons may incorporate these considerations when designing effective control strategies.

 

PDF
N. Karavas, et al., “Autonomous Soft Exosuit for Hip Extension Assistance,” in International Symposium on Wearable Robotics (WeRob) 2016, La Granja, Spain, 2016.
T. Miyatake, et al., “Biomechanical analysis and inertial sensing of ankle joint while stepping on an unanticipated bump,” in International Symposium on Wearable Robotics (WeRob) 2016, La Granja, Spain, 2016.
M. Grimmer, et al., “Comparison of Ankle Moment Inspired And Ankle Positive Power Inspired Controllers for a Multi-articular Soft Exosuit for Walking Assistance,” in International Symposium on Wearable Robotics (WeRob) 2016, La Granja, Spain, 2016.

Pages