Publications by Type: Journal Article

In Press
Y. Ding, M. Kim, C. J. Siviy, S. Kuindersma, and C. Walsh, “Human-in-the-loop multi-dimensional Bayesian optimization for hip extension assistance with a tethered soft exosuit,” Science Robotics, In Press.
2018
J. Gafford, H. Aihara, C. Thompson, R. Wood, and C. Walsh, “Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 171-178, 2018. PDF
J. Bae, et al., “Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke,” Journal of Experimental Biology, 2018. Publisher's VersionAbstract
{Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance—walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint powers, and metabolic power. Compared to walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4±6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic (R2= 0.83
PDF
2017
C. J. Payne, et al., “Soft robotic ventricular assist device with septal bracing for therapy of heart failure,” Science Robotics, vol. 2, no. 12, 2017. Publisher's VersionAbstract
Previous soft robotic ventricular assist devices have generally targeted biventricular heart failure and have not engaged the interventricular septum that plays a critical role in blood ejection from the ventricle. We propose implantable soft robotic devices to augment cardiac function in isolated left or right heart failure by applying rhythmic loading to either ventricle. Our devices anchor to the interventricular septum and apply forces to the free wall of the ventricle to cause approximation of the septum and free wall in systole and assist with recoil in diastole. Physiological sensing of the native hemodynamics enables organ-in-the-loop control of these robotic implants for fully autonomous augmentation of heart function. The devices are implanted on the beating heart under echocardiography guidance. We demonstrate the concept on both the right and the left ventricles through in vivo studies in a porcine model. Different heart failure models were used to demonstrate device function across a spectrum of hemodynamic conditions associated with right and left heart failure. These acute in vivo studies demonstrate recovery of blood flow and pressure from the baseline heart failure conditions. Significant reductions in diastolic ventricle pressure were also observed, demonstrating improved filling of the ventricles during diastole, which enables sustainable cardiac output.
PDF
O. Atalay, A. Atalay, J. Gafford, and C. J. Walsh, “Highly Sensitive Capacitive-Based Soft Pressure Sensor Based on Conductive Fabric and Micro-porous Dielectric Layer,” Advanced Materials Technologies, 2017. Publisher's VersionAbstract
In this paper, the design and manufacturing of a highly sensitive capacitive-based soft pressure sensor for wearable electronics applications are presented. Toward this aim, two types of soft conductive fabrics (knitted and woven), as well as two types of sacrificial particles (sugar granules and salt crystals) to create micropores within the dielectric layer of the capacitive sensor are evaluated, and the combined effects on the sensor's overall performance are assessed. It is found that a combination of the conductive knit electrode and higher dielectric porosity (generated using the larger sugar granules) yields higher sensitivity (121 × 10−4 kPa−1) due to greater compressibility and the formation of air gaps between silicone elastomer and conductive knit electrode among the other design considerations in this study. As a practical demonstration, the capacitive sensor is embedded into a textile glove for grasp motion monitoring during activities of daily living.
PDF
F. A. Panizzolo, et al., “Lower limb biomechanical analysis during an unanticipated step on a bump reveals specific adaptations of walking on uneven terrains,” Journal of Experimental Biology, vol. 220, no. 22, pp. 4169–4176, 2017. Publisher's VersionAbstract
Although it is clear that walking over different irregular terrain is associated with altered biomechanics, there is little understanding of how we quickly adapt to unexpected variations in terrain. This study aims to investigate which adaptive strategies humans adopt when performing an unanticipated step on an irregular surface, specifically a small bump. Nine healthy male participants walked at their preferred walking speed along a straight walkway during five conditions: four involving unanticipated bumps of two different heights, and one level walking condition. Muscle activation of eight lower limb muscles and three-dimensional gait analysis were evaluated during these testing conditions. Two distinct adaptive strategies were found, which involved no significant change in total lower limb mechanical work or walking speed. An ankle-based strategy was adopted when stepping on a bump with the forefoot, whereas a hip-based strategy was preferred when stepping with the rearfoot. These strategies were driven by a higher activation of the plantarflexor muscles (6–51%), which generated a higher ankle joint moment during the forefoot conditions and by a higher activation of the quadriceps muscles (36–93%), which produced a higher knee joint moment and hip joint power during the rearfoot conditions. These findings provide insights into how humans quickly react to unexpected events and could be used to inform the design of adaptive controllers for wearable robots intended for use in unstructured environments that can provide optimal assistance to the different lower limb joints.
PDF
C. J. Payne, et al., “An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization,” Soft Robotics, vol. 4, no. 3, pp. 241-250, 2017. Publisher's VersionAbstract
Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction–relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.
PDF
M. Kim, et al., “Human-in-the-loop Bayesian optimization of wearable device parameters,” PLOS ONE, vol. 12, no. 9, pp. 1-15, 2017. Publisher's VersionAbstract
The increasing capabilities of exoskeletons and powered prosthetics for walking assistance have paved the way for more sophisticated and individualized control strategies. In response to this opportunity, recent work on human-in-the-loop optimization has considered the problem of automatically tuning control parameters based on realtime physiological measurements. However, the common use of metabolic cost as a performance metric creates significant experimental challenges due to its long measurement times and low signal-to-noise ratio. We evaluate the use of Bayesian optimization—a family of sample-efficient, noise-tolerant, and global optimization methods—for quickly identifying near-optimal control parameters. To manage experimental complexity and provide comparisons against related work, we consider the task of minimizing metabolic cost by optimizing walking step frequencies in unaided human subjects. Compared to an existing approach based on gradient descent, Bayesian optimization identified a near-optimal step frequency with a faster time to convergence (12 minutes, p < 0.01), smaller inter-subject variability in convergence time (± 2 minutes, p < 0.01), and lower overall energy expenditure (p < 0.01).
PDF
J. B. Gafford, H. Aihara, C. Thompson, R. J. Wood, and C. J. Walsh, “Distal Proprioceptive Sensor for Motion Feedback in Endoscope-Based Modular Robotic Systems,” IEEE Robotics and Automation Letters, vol. PP, 2017. Publisher's VersionAbstract
Modular robotic systems that integrate with commercially-available endoscopic equipment have the potential to improve the standard-of-care in therapeutic endoscopy by granting clinicians with capabilities not present in commercial tools, such as precision dexterity and motion sensing. With the desire to integrate both sensing and actuation distally for closed-loop position control in fully-deployable, endoscope-based robotic modules, commercial sensor and actuator options that acquiesce to the strict form-factor requirements are sparse or nonexistent. Herein we describe a proprioceptive angle sensor for potential closed-loop position control applications in distal robotic modules. Fabricated monolithically using printed-circuit MEMS, the sensor employs a kinematic linkage and the principle of light intensity modulation to sense the angle of articulation with a high degree of fidelity. On-board temperature and environmental irradiance measurements, coupled with linear regression techniques, provide robust angle measurements that are insensitive to environmental disturbances. The sensor is capable of measuring +/-45 degrees of articulation with an RMS error of 0.98 degrees. An integrated demonstration shows that the sensor can give real-time proprioceptive feedback when coupled with an actuator module, opening up the possibility of fully-distal closed-loop control.
PDF
L. N. Awad, et al., “A soft robotic exosuit improves walking in patients after stroke,” Science Translational Medicine, vol. 9, no. 400, pp. eaai9084, 2017. Publisher's VersionAbstract

Passive assistance devices such as canes and braces are often used by people after stroke, but mobility remains limited for some patients. Awad et al. studied the effects of active assistance (delivery of supportive force) during walking in nine patients in the chronic phase of stroke recovery. A soft robotic exosuit worn on the partially paralyzed lower limb reduced interlimb propulsion asymmetry, increased ankle dorsiflexion, and reduced the energy required to walk when powered on during treadmill and overground walking tests. The exosuit could be adjusted to deliver supportive force during the early or late phase of the gait cycle depending on the patient’s needs. Although long-term therapeutic studies are necessary, the immediate improvement in walking performance observed using the powered exosuit makes this a promising approach for neurorehabilitation.

Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite—and perhaps because of—their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb’s residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer’s paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle’s swing phase dorsiflexion and 11 ± 3% increase in the paretic limb’s generation of forward propulsion (P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance ( 12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke.

PDF
L. N. Awad, et al., “Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit.,” American Journal of Physical Medicine & Rehabilitation, 2017. Publisher's VersionAbstract

Objective
The aim of the study was to evaluate the effects on common poststroke gait compensations of a soft wearable robot (exosuit) designed to assist the paretic limb during hemiparetic walking.

Design
A single-session study of eight individuals in the chronic phase of stroke recovery was conducted. Two testing conditions were compared: walking with the exosuit powered versus walking with the exosuit unpowered. Each condition was 8 minutes in duration.

Results
Compared with walking with the exosuit unpowered, walking with the exosuit powered resulted in reductions in hip hiking (27 [6%], P = 0.004) and circumduction (20 [5%], P = 0.004). A relationship between changes in knee flexion and changes in hip hiking was observed (Pearson r = −0.913, P < 0.001). Similarly, multivariate regression revealed that changes in knee flexion (β = −0.912, P = 0.007), but not ankle dorsiflexion (β = −0.194, P = 0.341), independently predicted changes in hip hiking (R2= 0.87, F(2, 4) = 13.48, P = 0.017).

Conclusions
Exosuit assistance of the paretic limb during walking produces immediate changes in the kinematic strategy used to advance the paretic limb. Future work is necessary to determine how exosuit-induced reductions in paretic hip hiking and circumduction during gait training could be leveraged to facilitate more normal walking behavior during unassisted walking.

PDF
S. Russo, T. Ranzani, C. J. Walsh, and R. J. Wood, “An Additive Millimeter-Scale Fabrication Method for Soft Biocompatible Actuators and Sensors,” Advanced Materials Technologies, 2017. Publisher's VersionAbstract
A hybrid manufacturing paradigm is introduced that combines pop-up book microelectromechanical systems (MEMS) manufacturing with soft-lithographic techniques to produce millimeter-scale mechanisms with embedded sensing and user-defined distributed compliance. This method combines accuracy, flexibility in material selection, scalability, and topological complexity with soft, biocompatible materials and microfluidics, paving the way for applications of soft fluid-powered biomedical robotics. This paper proposes two classes of fully soft fluidic microactuators and two integration strategies to demonstrate the hybrid soft pop-up actuators. Fatigue properties, blocked torque, maximum deflection, stiffness, and maximum speed are analyzed and the performance of the hybrid mechanisms is compared to their fully soft counterparts. The manufacturing approach allows integrating capacitive sensing elements in the mechanisms to achieve proprioceptive actuation. Multiple hybrid soft pop-up actuators are combined into a multiarticulated robotic arm that is integrated with current flexible endoscopes to improve distal dexterity and enable tissue retraction in an ex vivo proof of concept experiment.
PDF Supporting Information
P. Malcolm, et al., “Continuous sweep versus discrete step protocols for studying effects of wearable robot assistance magnitude,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 72, 2017. Publisher's VersionAbstract

Background
Different groups developed wearable robots for walking assistance, but there is still a need for methods to quickly tune actuation parameters for each robot and population or sometimes even for individual users. Protocols where parameters are held constant for multiple minutes have traditionally been used for evaluating responses to parameter changes such as metabolic rate or walking symmetry. However, these discrete protocols are time-consuming. Recently, protocols have been proposed where a parameter is changed in a continuous way. The aim of the present study was to compare effects of continuously varying assistance magnitude with a soft exosuit against discrete step conditions.

Methods
Seven participants walked on a treadmill wearing a soft exosuit that assists plantarflexion and hip flexion. In Continuous-up, peak exosuit ankle moment linearly increased from approximately 0 to 38% of biological moment over 10 min. Continuous-down was the opposite. In Discrete, participants underwent five periods of 5 min with steady peak moment levels distributed over the same range as Continuous-up and Continuous-down. We calculated metabolic rate for the entire Continuous-up and Continuous-down conditions and the last 2 min of each Discrete force level. We compared kinematics, kinetics and metabolic rate between conditions by curve fitting versus peak moment.

Results
Reduction in metabolic rate compared to Powered-off was smaller in Continuous-up than in Continuous-down at most peak moment levels, due to physiological dynamics causing metabolic measurements in Continuous-up and Continuous-down to lag behind the values expected during steady-state testing. When evaluating the average slope of metabolic reduction over the entire peak moment range there was no significant difference between Continuous-down and Discrete. Attempting to correct the lag in metabolics by taking the average of Continuous-up and Continuous-down removed all significant differences versus Discrete. For kinematic and kinetic parameters, there were no differences between all conditions.

Conclusions
The finding that there were no differences in biomechanical parameters between all conditions suggests that biomechanical parameters can be recorded with the shortest protocol condition (i.e. single Continuous directions). The shorter time and higher resolution data of continuous sweep protocols hold promise for the future study of human interaction with wearable robots.

PDF
A. Atalay, et al., “Batch Fabrication of Customizable Silicone-Textile Composite Capacitive Strain Sensors for Human Motion Tracking,” Advanced Materials Technologies, 2017. Publisher's VersionAbstract
This paper presents design and batch manufacturing of a highly stretchable textile-silicone capacitive sensor to be used in human articulation detection, soft robotics, and exoskeletons. The proposed sensor is made of conductive knit fabric as electrode and silicone elastomer as dielectric. The batch manufacturing technology enables production of large sensor mat and arbitrary shaping of sensors, which is precisely achieved via laser cutting of the sensor mat. Individual capacitive sensors exhibit high linearity, low hysteresis, and a gauge factor of 1.23. Compliant, low-profile, and robust electrical connections are established by fusing filaments of micro coaxial cable to conductive fabric electrodes of the sensor with thermoplastic film. The capacitive sensors are integrated on a reconstructed glove for monitoring finger motions.
PDF Supplementary Material
P. Malcolm, et al., “Varying negative work assistance at the ankle with a soft exosuit during loaded walking,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 62, 2017. Publisher's VersionAbstract

Background
Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit.

Methods
We tested eight participants during walking at 1.5 ms−1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg−1 and a fixed rate of positive work assistance of 0.19 W kg−1.

Results
All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment.

Conclusions
The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance.

PDF
O. Atalay, A. Atalay, J. Gafford, H. Wang, R. Wood, and C. Walsh, “A Highly Stretchable Capacitive-Based Strain Sensor Based on Metal Deposition and Laser Rastering,” Advanced Materials Technologies, 2017. Publisher's VersionAbstract
Wearable sensing technology is an emerging area and can be utilized for human motion monitoring, physiology monitoring, and human–machine interaction. In this paper, a new manufacturing approach is presented to create highly stretchable and soft capacitance-based strain sensors. This involves a rapid surface modification technique based on direct-write laser rastering to create microstructured surfaces on prestrained elastomeric sheets. Then, to impart conductivity, sputtering technology is utilized to deposit aluminum and silver metal layers on the bottom and top surfaces of the elastomer sheet, creating a soft capacitor. During benchtop characterization of the sensors, this study demonstrates that the fabricated electrodes maintain their electrical conductivity up to the 250% strain, and the sensor shows a linear and repeatable output up to 85% strain. Finally, their potential is demonstrated for monitoring human motion and respiration through their integration into a wearable arm sleeve and a thoracic belt, respectively.
PDF
G. Lee, et al., “Reducing the metabolic cost of running with a tethered soft exosuit,” Science Robotics, vol. 2, no. 6, pp. eaan6708, 2017. Publisher's VersionAbstract
Assisting hip extension with a tethered exosuit and a simulation-optimized force profile reduces metabolic cost of running.
PDF
M. B. Yandell, B. T. Quinlivan, D. Popov, C. Walsh, and K. E. Zelik, “Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 40, 2017. Publisher's VersionAbstract

 

Background
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.

Methods
Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power).

Results
We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics.

Conclusions
Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

 

PDF
M. A. Horvath, et al., “An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection from the Failing Right Ventricle,” Annals of Biomedical Engineering, pp. 1-12, 2017. Publisher's VersionAbstract

We introduce an implantable intracardiac soft robotic right ventricular ejection device (RVED) for dynamic approximation of the right ventricular (RV) free wall and the interventricular septum (IVS) in synchrony with the cardiac cycle to augment blood ejection in right heart failure (RHF). The RVED is designed for safe and effective intracardiac operation and consists of an anchoring system deployed across the IVS, an RV free wall anchor, and a pneumatic artificial muscle linear actuator that spans the RV chamber between the two anchors. Using a ventricular simulator and a custom controller, we characterized ventricular volume ejection, linear approximation against different loads and the effect of varying device actuation periods on volume ejection. The RVED was then tested in vivo in adult pigs (n = 5). First, we successfully deployed the device into the beating heart under 3D echocardiography guidance (n = 4). Next, we performed a feasibility study to evaluate the device's ability to augment RV ejection in an experimental model of RHF (n = 1). RVED actuation augmented RV ejection during RHF; while further chronic animal studies will provide details about the efficacy of this support device. These results demonstrate successful design and implementation of the RVED and its deployment into the beating heart. This soft robotic ejection device has potential to serve as a rapidly deployable system for mechanical circulatory assistance in RHF.

PDF
Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit
B. T. Quinlivan, et al., “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit,” Science Robotics, vol. 2, no. 2, pp. eaah4416, 2017. Publisher's VersionAbstract

When defining requirements for any wearable robot for walking assistance, it is important to maximize the user’s metabolic benefit resulting from the exosuit assistance while limiting the metabolic penalty of carrying the system’s mass. Thus, the aim of this study was to isolate and characterize the relationship between assistance magnitude and the metabolic cost of walking while also examining changes to the wearer’s underlying gait mechanics. The study was performed with a tethered multiarticular soft exosuit during normal walking, where assistance was directly applied at the ankle joint and indirectly at the hip due to a textile architecture. The exosuit controller was designed such that the delivered torque profile at the ankle joint approximated that of the biological torque during normal walking. Seven participants walked on a treadmill at 1.5 meters per second under one unpowered and four powered conditions, where the peak moment applied at the ankle joint was varied from about 10 to 38% of biological ankle moment (equivalent to an applied force of 18.7 to 75.0% of body weight). Results showed that, with increasing exosuit assistance, net metabolic rate continually decreased within the tested range. When maximum assistance was applied, the metabolic rate of walking was reduced by 22.83 ± 3.17% relative to the powered-off condition (mean ± SEM).

PDF

Pages