All Publications

2017
G. Lee, Y. Ding, I. B. Galiana, N. Karavas, Y. M. Zhou, and C. J. Walsh, “Improved assistive profile tracking for walking and jogging soft exosuits with off-board actuation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 24-28, 2017. PDF
J. B. Gafford, R. J. Wood, and C. J. Walsh, “Distal Proprioceptive Sensor for Feedback Control of Modular Roboendoscopic Systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 24-28, 2017. PDF
O. Atalay, A. Atalay, J. Gafford, H. Wang, R. Wood, and C. Walsh, “A Highly Stretchable Capacitive-Based Strain Sensor Based on Metal Deposition and Laser Rastering,” Advanced Materials Technologies, 2017. Publisher's VersionAbstract
Wearable sensing technology is an emerging area and can be utilized for human motion monitoring, physiology monitoring, and human–machine interaction. In this paper, a new manufacturing approach is presented to create highly stretchable and soft capacitance-based strain sensors. This involves a rapid surface modification technique based on direct-write laser rastering to create microstructured surfaces on prestrained elastomeric sheets. Then, to impart conductivity, sputtering technology is utilized to deposit aluminum and silver metal layers on the bottom and top surfaces of the elastomer sheet, creating a soft capacitor. During benchtop characterization of the sensors, this study demonstrates that the fabricated electrodes maintain their electrical conductivity up to the 250% strain, and the sensor shows a linear and repeatable output up to 85% strain. Finally, their potential is demonstrated for monitoring human motion and respiration through their integration into a wearable arm sleeve and a thoracic belt, respectively.
PDF
G. Lee, et al., “Reducing the metabolic cost of running with a tethered soft exosuit,” Science Robotics, vol. 2, no. 6, pp. eaan6708, 2017. Publisher's VersionAbstract
Assisting hip extension with a tethered exosuit and a simulation-optimized force profile reduces metabolic cost of running.
PDF
E. J. Park, et al., “Design and Preliminary Evaluation of a Multi-Robotic System with Pelvic and Hip Assistance for Pediatric Gait Rehabilitation,” in 15th IEEE International Conference on Rehabilitation Robotics (ICORR), London, July 17-20, 2017. PDF
C. O'Neill, N. Phipps, L. Cappello, S. Paganoni, and C. J. Walsh, “Soft Robotic Shoulder Support: Design, Characterization, and Preliminary Testing,” in 15th IEEE International Conference on Rehabilitation Robotics (ICORR), London, July 17-20, 2017. PDF
M. B. Yandell, B. T. Quinlivan, D. Popov, C. Walsh, and K. E. Zelik, “Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices,” Journal of NeuroEngineering and Rehabilitation, vol. 14, no. 1, pp. 40, 2017. Publisher's VersionAbstract

 

Background
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power.

Methods
Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power).

Results
We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics.

Conclusions
Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

 

PDF
M. A. Horvath, et al., “An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection from the Failing Right Ventricle,” Annals of Biomedical Engineering, pp. 1-12, 2017. Publisher's VersionAbstract

We introduce an implantable intracardiac soft robotic right ventricular ejection device (RVED) for dynamic approximation of the right ventricular (RV) free wall and the interventricular septum (IVS) in synchrony with the cardiac cycle to augment blood ejection in right heart failure (RHF). The RVED is designed for safe and effective intracardiac operation and consists of an anchoring system deployed across the IVS, an RV free wall anchor, and a pneumatic artificial muscle linear actuator that spans the RV chamber between the two anchors. Using a ventricular simulator and a custom controller, we characterized ventricular volume ejection, linear approximation against different loads and the effect of varying device actuation periods on volume ejection. The RVED was then tested in vivo in adult pigs (n = 5). First, we successfully deployed the device into the beating heart under 3D echocardiography guidance (n = 4). Next, we performed a feasibility study to evaluate the device's ability to augment RV ejection in an experimental model of RHF (n = 1). RVED actuation augmented RV ejection during RHF; while further chronic animal studies will provide details about the efficacy of this support device. These results demonstrate successful design and implementation of the RVED and its deployment into the beating heart. This soft robotic ejection device has potential to serve as a rapidly deployable system for mechanical circulatory assistance in RHF.

PDF
Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit
B. T. Quinlivan, et al., “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit,” Science Robotics, vol. 2, no. 2, pp. eaah4416, 2017. Publisher's VersionAbstract

When defining requirements for any wearable robot for walking assistance, it is important to maximize the user’s metabolic benefit resulting from the exosuit assistance while limiting the metabolic penalty of carrying the system’s mass. Thus, the aim of this study was to isolate and characterize the relationship between assistance magnitude and the metabolic cost of walking while also examining changes to the wearer’s underlying gait mechanics. The study was performed with a tethered multiarticular soft exosuit during normal walking, where assistance was directly applied at the ankle joint and indirectly at the hip due to a textile architecture. The exosuit controller was designed such that the delivered torque profile at the ankle joint approximated that of the biological torque during normal walking. Seven participants walked on a treadmill at 1.5 meters per second under one unpowered and four powered conditions, where the peak moment applied at the ankle joint was varied from about 10 to 38% of biological ankle moment (equivalent to an applied force of 18.7 to 75.0% of body weight). Results showed that, with increasing exosuit assistance, net metabolic rate continually decreased within the tested range. When maximum assistance was applied, the metabolic rate of walking was reduced by 22.83 ± 3.17% relative to the powered-off condition (mean ± SEM).

PDF
F. Connolly, C. J. Walsh, and K. Bertoldi, “Automatic design of fiber-reinforced soft actuators for trajectory matching,” Proceedings of the National Academy of Sciences (PNAS), vol. 114, no. 1, pp. 51-56, 2017. Publisher's VersionAbstract

Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.

PDF
T. Ranzani, S. Russo, F. Schwab, C. J. Walsh, and R. J. Wood, “Deployable stabilization mechanisms for endoscopic procedures,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017. Publisher's VersionAbstract
Abstract:
Flexible endoscopes are still the gold standard in most natural orifice translumenal endoscopic surgery (NOTES) procedures; however their flexibility (necessary for navigating through the GI tract) limits their capabilities in terms of distal manipulation and stability. We propose a deployable endoscopic add-on aimed at locally counteracting forces applied at the tip of an endoscope. We analyze different designs: a fully soft version and two hybrid soft-folded versions. The hybrid designs exploit either an inextensible structure pressurized by a soft actuator or the stiffness provided by the unfolded “magic cube” origami structure. We focus on the fabrication and experimental characterization of the proposed structures and present some preliminary designs and integration strategies to mount them on top of current flexible endoscopes.
PDF
J. B. Gafford, R. J. Wood, and C. J. Walsh, “A high-force, high-stroke distal robotic add-on for endoscopy,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017. Publisher's VersionAbstract
‘Snap-On’ robotic modules that can integrate distally with existing commercially-available endoscopic equipment have the potential to provide new capabilities such as enhanced dexterity, bilateral manipulation and feedback sensing with minimal disruption of the current clinical workflow. However, the desire for fully-distal integration of sensors and actuators and the resulting form factor requirements preclude the use of many off-the-shelf actuators capable of generating the relevant strokes and forces required to interact with tools and tissue. In this work, we investigate the use of millimeter-scale, optimally-packed helical shape memory alloy (SMA) actuators in an antagonistic configuration to provide distal actuation without the need for a continuous mechanical coupling to proximal, off-board actuation packages to realize a truly plug-and-play solution. Using phenomenological modeling, we design and fabricate antagonistic helical SMA pairs and implement them in an at-scale roboendoscopic module to generate strokes and forces necessary for deflecting tools passed through the endoscope working port, thereby providing a controllable robotic ‘wrist’ inside the body to otherwise passive flexible tools. Bandwidth is drastically improved through the integration of targeted fluid cooling. The integrated system can generate maximum lateral forces of 10N and demonstrates an additional 96 degrees of distal angulation, expanding the reachable workspace of tools passed through a standard endoscope.
PDF
Z. Wang, P. Polygerinos, J. T. B. Overvelde, K. C. Galloway, K. Bertoldi, and C. J. Walsh, “Interaction Forces of Soft Fiber Reinforced Bending Actuators,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 717-727, 2017. Publisher's VersionAbstract

Soft bending actuators are inherently compliant, compact, and lightweight. They are preferable candidates over rigid actuators for robotic applications ranging from physical human interaction to delicate object manipulation. However, characterizing and predicting their behaviors are challenging due to the material nonlinearities and the complex motions they can produce. This paper investigates a soft bending actuator design that uses a single air chamber and fiber reinforcements. Additionally, the actuator design incorporates a sensing layer to enable real-time bending angle measurement for analysis and control. In order to study the bending and force exertion characteristics when interacting with the environment, a quasistatic analytical model is developed based on the bending moments generated from the applied internal pressure and stretches of the soft materials. Comparatively, a finite-element method model is created for the same actuator design. Both the analytical model and the finite-element model are used in the fiber reinforcement analysis and the validation experiments with fabricated actuators. The experimental results demonstrate that the analytical model captures the relationships of supplied air pressure, actuator bending angle, and interaction force at the actuator tip. Moreover, it is shown that an off-the-shelf bend angle sensor integrated to the actuator in this study could provide real-time force estimation, thus eliminating the need for a force sensor.

PDF
Soft robotic sleeve supports heart function
E. T. Roche, et al., “Soft robotic sleeve supports heart function,” Science Translational Medicine, vol. 9, no. 373, 2017. Publisher's VersionAbstract

There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heart muscle. We present a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure.

PDF
D. P. Holland, et al., “The Soft Robotics Toolkit: Strategies for Overcoming Obstacles to the Wide Dissemination of Soft-Robotic Hardware,” IEEE Robotics and Automation Magazine, Special Issue on Open Source and Widely Disseminated Robot Hardware, vol. 24, no. 1, pp. 57-64, 2017. Publisher's VersionAbstract

The Soft Robotics Toolkit (SRT) is an open-access website containing detailed information about the design, fabrication, and characterization of soft-robotic components and systems (Figure 1). Soft robotics is a growing field of research concerned with the development of electromechanical technology composed of compliant materials or structures. The SRT website hosts design files, multimedia fabrication instructions, and software tutorials submitted by an international community of soft-robotics researchers and designers. In this article, we describe the development of the SRT and some challenges in developing widely disseminated robotic-hardware resources. Our attempts to overcome these challenges in the development of the toolkit are discussed by focusing on strategies that have been used to engage participants ranging from K-12 grade students to robotics research groups. A series of design competitions encouraged people to use and contribute to the toolkit. New fabrication methods requiring only low-cost and accessible materials were developed to lower the entry barriers to soft robotics and instructional materials and outreach activities were used to engage new audiences. We hope that our experiences in developing and scaling the toolkit may serve as guidance for other open robotic-hardware projects.

PDF
J. B. Gafford, et al., “Toward Medical Devices With Integrated Mechanisms, Sensors, and Actuators Via Printed-Circuit MEMS,” ASME Journal of Medical Devices, vol. 11, no. 1, pp. 011007-011018, 2017. Publisher's VersionAbstract

Recent advances in medical robotics have initiated a transition from rigid serial manipulators to flexible or continuum robots capable of navigating to confined anatomy within the body. A desire for further procedure minimization is a key accelerator for the development of these flexible systems where the end goal is to provide access to the previously inaccessible anatomical workspaces and enable new minimally invasive surgical (MIS) procedures. While sophisticated navigation and control capabilities have been demonstrated for such systems, existing manufacturing approaches have limited the capabilities of millimeter-scale end-effectors for these flexible systems to date and, to achieve next generation highly functional end-effectors for surgical robots, advanced manufacturing approaches are required. We address this challenge by utilizing a disruptive 2D layer-by-layer precision fabrication process (inspired by printed circuit board manufacturing) that can create functional 3D mechanisms by folding 2D layers of materials which may be structural, flexible, adhesive, or conductive. Such an approach enables actuation, sensing, and circuitry to be directly integrated with the articulating features by selecting the appropriate materials during the layer-by-layer manufacturing process. To demonstrate the efficacy of this technology, we use it to fabricate three modular robotic components at the millimeter-scale: (1) sensors, (2) mechanisms, and (3) actuators. These modules could potentially be implemented into transendoscopic systems, enabling bilateral grasping, retraction and cutting, and could potentially mitigate challenging MIS interventions performed via endoscopy or flexible means. This research lays the ground work for new mechanism, sensor and actuation technologies that can be readily integrated via new millimeter-scale layer-by-layer manufacturing approaches.

PDF
Y. Ding, et al., “Biomechanical and Physiological Evaluation of Multi-joint Assistance with Soft Exosuits,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 2, pp. 119 - 130, 2017. Publisher's VersionAbstract

To understand the effects of soft exosuits on human loaded walking, we developed a reconfigurable multi-joint actuation platform that can provide synchronized forces to the ankle and hip joints. Two different assistive strategies were evaluated on eight subjects walking on a treadmill at a speed of 1.25 m/s with a 23.8 kg backpack: 1) hip extension assistance and 2) multi-joint assistance (hip extension, ankle plantarflexion and hip flexion). Results show that the exosuit introduces minimum changes to kinematics and reduces biological joint moments. A reduction trend in muscular activity was observed for both conditions. On average, the exosuit reduced the metabolic cost of walking by 0.21 ± 0.04 W/kg and 0.67 ± 0.09 W/kg for hip extension assistance and multi-joint assistance respectively, which is equivalent to an average metabolic reduction of 4.6% and 14.6% demonstrating that soft exosuits can effectively improve human walking efficiency during load carriage without affecting natural walking gait. Moreover, it indicates that actuating multiple joints with soft exosuits provides a significant benefit to muscular activity and metabolic cost compared to actuating single joint.

PDF
2016
Y. Ding, et al., “Effect of timing of hip extension assistance during loaded walking with a soft exosuit,” Journal of NeuroEngineering and Rehabilitation, vol. 2016, no. 13, pp. 87, 2016. Publisher's VersionAbstract

 

Background
Recent advances in wearable robotic devices have demonstrated the ability to reduce the metabolic cost of walking by assisting the ankle joint. To achieve greater gains in the future it will be important to determine optimal actuation parameters and explore the effect of assisting other joints. The aim of the present work is to investigate how the timing of hip extension assistance affects the positive mechanical power delivered by an exosuit and its effect on biological joint power and metabolic cost during loaded walking. In this study, we evaluated 4 different hip assistive profiles with different actuation timings: early-start-early-peak (ESEP), early-start-late-peak (ESLP), late-start-early-peak (LSEP), late-start-late-peak (LSLP).

Methods
Eight healthy participants walked on a treadmill at a constant speed of 1.5 m · s-1 while carrying a 23 kg backpack load. We tested five different conditions: four with the assistive profiles described above and one unpowered condition where no assistance was provided. We evaluated participants’ lower limb kinetics, kinematics, metabolic cost and muscle activation.

Results
The variation of timing in the hip extension assistance resulted in a different amount of mechanical power delivered to the wearer across conditions; with the ESLP condition providing a significantly higher amount of positive mechanical power (0.219 ± 0.006 W · kg-1) with respect to the other powered conditions. Biological joint power was significantly reduced at the hip (ESEP and ESLP) and at the knee (ESEP, ESLP and LSEP) with respect to the unpowered condition. Further, all assistive profiles significantly reduced the metabolic cost of walking compared to the unpowered condition by 5.7 ± 1.5 %, 8.5 ± 0.9 %, 6.3 ± 1.4 % and 7.1 ± 1.9 % (mean ± SE for ESEP, ESLP, LSEP, LSLP, respectively).

Conclusions
The highest positive mechanical power delivered by the soft exosuit was reported in the ESLP condition, which showed also a significant reduction in both biological hip and knee joint power. Further, the ESLP condition had the highest average metabolic reduction among the powered conditions. Future work on autonomous hip exoskeletons may incorporate these considerations when designing effective control strategies.

 

PDF
D. P. Holland, G. J. Bennett, G. M. Whitesides, R. J. Wood, and C. J. Walsh, “The 2015 Soft Robotics Competition,” IEEE Robotics & Automation Magazine, vol. 23, no. 3, pp. 25-27, 2016. Publisher's Version PDF
O. Araromi, C. J. Walsh, and R. J. Wood, “Fabrication of Stretchable Composites with Anisotropic Electrical Conductivity for Compliant Pressure Transducers,” in IEEE Sensors Conference 2016, Orlando, Florida, 2016. Publisher's VersionAbstract

We present a simple fabrication approach for anisotropically conductive stretchable composites, towards novel flexible pressure transducers. Flexible electronic systems have gained great interest in recent years, and within this space, anisotropic conducting materials have been explored for enhanced sensing performance. However, current methods for producing these materials are complex or are limited to small fabrication areas. Our method uses film applicator coating to render commercially available conductive RTVs anisotropically conductive. A ratio of in-plane surface resistance to through-thickness resistance of 1010 was achieved using our method. Furthermore, we show that when a normal pressure is applied to such films, the in-plane resistance can be reduced by seven orders of magnitude for an applied pressure of 10 kPa. Hence these materials show great promise for the development of novel, robust pressure transducers.

PDF

Pages